PerioGlas (PG) is an alloplastic material used for grafting periodontal osseous defects since 1995. In animal models it has been histologically proven that PG achieves good repair of surgically created defects. In clinical trials, PG has been shown to be effective as an adjunct to conventional surgery in treating intrabony defects. Because the molecular events by which PG is able to alter osteoblast activity to promote bone formation are poorly understood, we investigated genes that are differently regulated in osteoblast-like cells exposed to PG. Bone formation can be attributable to ostegenesis (ie, direct stimulation of osteoblast to produce new bone), osteoconduction (which operates like a scaffold), or both processes. By using DNA microarrays containing 20 000 oligonucleotides, we identified several genes in which expression was significantly downregulated in a MG63 cell line cultured with PerioGlas (US Biomaterials Corp, Alachua, Fla). Specifically, PG is able to downregulate some functional activities of osteoblast-like cells: it acts on signal transduction, especially on the transforming growth factor beta (TGFB) paracrine network; it inhibits apoptosis; it decreases cell adhesion with consequent enhancement of cell mobility and migration; and it acts on bone marrow stem cells (ie, CD34). In conclusion, PG acts on bone formation by determining both osteoconduction (as demonstrated by the reduced cell adhesion) and ostegenesis (as shown by TGFB-related proteins and stem cell markers).

Genetic portrait of osteoblast-like cells cultured on PerioGlas / Carinci F.; Palmieri A.; Martinelli M.; Perrotti V.; Piattelli A.; Brunelli G.; Arlotti M.; Pezzetti F.. - In: JOURNAL OF ORAL IMPLANTOLOGY. - ISSN 0160-6972. - STAMPA. - 33:(2007), pp. 327-333.

Genetic portrait of osteoblast-like cells cultured on PerioGlas

PALMIERI, ANNALISA;MARTINELLI, MARCELLA;ARLOTTI, MARZIA;PEZZETTI, FURIO
2007

Abstract

PerioGlas (PG) is an alloplastic material used for grafting periodontal osseous defects since 1995. In animal models it has been histologically proven that PG achieves good repair of surgically created defects. In clinical trials, PG has been shown to be effective as an adjunct to conventional surgery in treating intrabony defects. Because the molecular events by which PG is able to alter osteoblast activity to promote bone formation are poorly understood, we investigated genes that are differently regulated in osteoblast-like cells exposed to PG. Bone formation can be attributable to ostegenesis (ie, direct stimulation of osteoblast to produce new bone), osteoconduction (which operates like a scaffold), or both processes. By using DNA microarrays containing 20 000 oligonucleotides, we identified several genes in which expression was significantly downregulated in a MG63 cell line cultured with PerioGlas (US Biomaterials Corp, Alachua, Fla). Specifically, PG is able to downregulate some functional activities of osteoblast-like cells: it acts on signal transduction, especially on the transforming growth factor beta (TGFB) paracrine network; it inhibits apoptosis; it decreases cell adhesion with consequent enhancement of cell mobility and migration; and it acts on bone marrow stem cells (ie, CD34). In conclusion, PG acts on bone formation by determining both osteoconduction (as demonstrated by the reduced cell adhesion) and ostegenesis (as shown by TGFB-related proteins and stem cell markers).
2007
Genetic portrait of osteoblast-like cells cultured on PerioGlas / Carinci F.; Palmieri A.; Martinelli M.; Perrotti V.; Piattelli A.; Brunelli G.; Arlotti M.; Pezzetti F.. - In: JOURNAL OF ORAL IMPLANTOLOGY. - ISSN 0160-6972. - STAMPA. - 33:(2007), pp. 327-333.
Carinci F.; Palmieri A.; Martinelli M.; Perrotti V.; Piattelli A.; Brunelli G.; Arlotti M.; Pezzetti F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/55113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact