Diesel and spark-ignition piston engines are an ideal choice for long endurance, high altitude operations (10, 000m/33, 000ft) and extremely high altitude operations (20,000m-65,000ft). These systems are more complex than traditional applications that are normally limited to 5, 000-7, 000m (16, 000-23, 000ft). In fact, the air propulsion system (propeller or fan), the air intake, the fuel system, the turbo charging, the exhaust and the cooling system take part to the design optimization process. An integrated design is strictly necessary. Since prop-fan is currently under development, the design should start from the choice between propeller and fan. This choice will influence optimum cruise speed, critical altitude and aircraft design as a whole. The air induction system is extremely important to improve efficiency, endurance and critical altitude. At low altitude, a filtered induction system is used for takeoff. At high altitudes, the intake air is taken from high-pressure areas into an alternate, extremely optimized, path. This induction system recovers as much pressure as possible, air kinetic energy at cruise speed. In propeller systems, the intake is usually positioned in the lower part of the aircraft. On fan systems, a little amount of "high pressure" air is taken from the high-pressure area of the fan. The exhaust system is also critical with the choice between pressure recovery and thrust. Exhaust-pressure-recovery reduces backpressure and temperature at exhaust. However, the improvement in critical altitude is marginal. In more common, thrust driven exhaust systems, the exhaust energy is converted into speed and thrust. At the relatively high speed of high altitude cruise, also the cooling system adds a small amount of thrust through the Meredith's effect. The piston engine power plant design is then extremely critical. Many different components should find the correct position for maximum performance. The power-plants of WWII water-cooled fighters and bombers are good examples, even if their design cruise altitude is below 10, 000m (33, 000ft). Modern turbofan and turbojet air intakes are also of help. However, the requirements of low weight, high reliability and long endurance HALE (High Altitude Long Endurance) UAVs (Unmanned Aerial Vehicle) requires further work on this specific subject.
Piancastelli, L., Frizziero, L., Pica, S., Donnici, G. (2016). High altitude operations with piston engines powerplant design optimization. JOURNAL OF ENGINEERING AND APPLIED SCIENCES, 11(5), 3525-3533.
High altitude operations with piston engines powerplant design optimization
PIANCASTELLI, LUCA;FRIZZIERO, LEONARDO;DONNICI, GIAMPIERO
2016
Abstract
Diesel and spark-ignition piston engines are an ideal choice for long endurance, high altitude operations (10, 000m/33, 000ft) and extremely high altitude operations (20,000m-65,000ft). These systems are more complex than traditional applications that are normally limited to 5, 000-7, 000m (16, 000-23, 000ft). In fact, the air propulsion system (propeller or fan), the air intake, the fuel system, the turbo charging, the exhaust and the cooling system take part to the design optimization process. An integrated design is strictly necessary. Since prop-fan is currently under development, the design should start from the choice between propeller and fan. This choice will influence optimum cruise speed, critical altitude and aircraft design as a whole. The air induction system is extremely important to improve efficiency, endurance and critical altitude. At low altitude, a filtered induction system is used for takeoff. At high altitudes, the intake air is taken from high-pressure areas into an alternate, extremely optimized, path. This induction system recovers as much pressure as possible, air kinetic energy at cruise speed. In propeller systems, the intake is usually positioned in the lower part of the aircraft. On fan systems, a little amount of "high pressure" air is taken from the high-pressure area of the fan. The exhaust system is also critical with the choice between pressure recovery and thrust. Exhaust-pressure-recovery reduces backpressure and temperature at exhaust. However, the improvement in critical altitude is marginal. In more common, thrust driven exhaust systems, the exhaust energy is converted into speed and thrust. At the relatively high speed of high altitude cruise, also the cooling system adds a small amount of thrust through the Meredith's effect. The piston engine power plant design is then extremely critical. Many different components should find the correct position for maximum performance. The power-plants of WWII water-cooled fighters and bombers are good examples, even if their design cruise altitude is below 10, 000m (33, 000ft). Modern turbofan and turbojet air intakes are also of help. However, the requirements of low weight, high reliability and long endurance HALE (High Altitude Long Endurance) UAVs (Unmanned Aerial Vehicle) requires further work on this specific subject.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.