Expanding X-ray cavities observed in hot gas atmospheres of many galaxy groups and clusters generate shock waves and turbulence that are primary heating mechanisms required to avoid uninhibited radiatively cooling flows which are not observed. However, we show here that the evolution of buoyant cavities also stimulates radiative cooling of observable masses of low-temperature gas. During their early evolution, radiative cooling occurs in the wakes of buoyant cavities in two locations: in thin radial filaments parallel to the buoyant velocity and more broadly in gas compressed beneath rising cavities. Radiation from these sustained compressions removes entropy from the hot gas. Gas experiencing the largest entropy loss cools first, followed by gas with progressively less entropy loss. Most cooling occurs at late times, ∼108-109 yr, long after the X-ray cavities have disrupted and are impossible to detect. During these late times, slightly denser low entropy gas sinks slowly toward the centers of the hot atmospheres where it cools intermittently, forming clouds near the cluster center. Single cavities of energy 1057-1058 ergs in the atmosphere of the NGC 5044 group create 108-109 M⊙ of cooled gas, exceeding the mass of extended molecular gas currently observed in that group. The cooled gas clouds we compute share many attributes with molecular clouds recently observed in NGC 5044 with ALMA: self-gravitationally unbound, dust-free, quasirandomly distributed within a few kiloparsecs around the group center.

Brighenti, F., Mathews, W.G., Temi, P. (2015). Hot gaseous atmospheres in galaxy groups and clusters are both heated and cooled by X-ray cavities. THE ASTROPHYSICAL JOURNAL, 802(2), 118-130 [10.1088/0004-637X/802/2/118].

Hot gaseous atmospheres in galaxy groups and clusters are both heated and cooled by X-ray cavities

BRIGHENTI, FABRIZIO;
2015

Abstract

Expanding X-ray cavities observed in hot gas atmospheres of many galaxy groups and clusters generate shock waves and turbulence that are primary heating mechanisms required to avoid uninhibited radiatively cooling flows which are not observed. However, we show here that the evolution of buoyant cavities also stimulates radiative cooling of observable masses of low-temperature gas. During their early evolution, radiative cooling occurs in the wakes of buoyant cavities in two locations: in thin radial filaments parallel to the buoyant velocity and more broadly in gas compressed beneath rising cavities. Radiation from these sustained compressions removes entropy from the hot gas. Gas experiencing the largest entropy loss cools first, followed by gas with progressively less entropy loss. Most cooling occurs at late times, ∼108-109 yr, long after the X-ray cavities have disrupted and are impossible to detect. During these late times, slightly denser low entropy gas sinks slowly toward the centers of the hot atmospheres where it cools intermittently, forming clouds near the cluster center. Single cavities of energy 1057-1058 ergs in the atmosphere of the NGC 5044 group create 108-109 M⊙ of cooled gas, exceeding the mass of extended molecular gas currently observed in that group. The cooled gas clouds we compute share many attributes with molecular clouds recently observed in NGC 5044 with ALMA: self-gravitationally unbound, dust-free, quasirandomly distributed within a few kiloparsecs around the group center.
2015
Brighenti, F., Mathews, W.G., Temi, P. (2015). Hot gaseous atmospheres in galaxy groups and clusters are both heated and cooled by X-ray cavities. THE ASTROPHYSICAL JOURNAL, 802(2), 118-130 [10.1088/0004-637X/802/2/118].
Brighenti, Fabrizio; Mathews, William G.; Temi, Pasquale
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/548002
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact