Background: Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. Results: MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. Conclusions: The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf.
Mantini D, Petrucci F, Pieragostino D, Del Boccio P, Sacchetta P, Candiano G, et al. (2010). A computational platform for MALDI-TOF mass spectrometry data: Application to serum and plasma samples. JOURNAL OF PROTEOMICS, 73 (3), 562-570 [10.1016/j.jprot.2009.11.004].
A computational platform for MALDI-TOF mass spectrometry data: Application to serum and plasma samples
LUGARESI, ALESSANDRA;
2010
Abstract
Background: Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. Results: MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. Conclusions: The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


