Acetylcholine can modulate hippocampal network function through activation of both nicotinic and muscarinic acetylcholine receptors (mAChRs). All five mAChR subtypes have been identified in the hippocampus. Besides by their involvement in excitability of hippocampal cells, synaptic plasticity and memory, a large body of research has demonstrated the involvement of presynaptic mAChRs in the inhibition of glutamatergic transmission in the hippocampus. Over the years, however, pharmacological and molecular genetic studies have yielded quite contradictory results regarding the mAChR subtype(s) involved. In this study, multi-electrode array technology was used for the pharmacological elucidation of the subtype of mAChR mediating the depression of excitatory synaptic transmission at the SC-CA1 synapse. Using selective antagonists (VU0255035, MT7, tripinamide, MT3) and allosteric potentiators (VU 10010, VU 0238429) the involvement of M1, M2, M4, and M5 subtypes was ruled out thereby implying a major modulatory role for M3 receptors in the inhibition of excitatory synaptic transmission in area CA1 of rat hippocampus.

De Vin, F., Choi, S.M., Bolognesi, M.L., Lefebvre, R.A. (2015). Presynaptic M3 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in area CA1 of rat hippocampus. BRAIN RESEARCH, 1629, 260-269 [10.1016/j.brainres.2015.10.031].

Presynaptic M3 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in area CA1 of rat hippocampus

BOLOGNESI, MARIA LAURA;
2015

Abstract

Acetylcholine can modulate hippocampal network function through activation of both nicotinic and muscarinic acetylcholine receptors (mAChRs). All five mAChR subtypes have been identified in the hippocampus. Besides by their involvement in excitability of hippocampal cells, synaptic plasticity and memory, a large body of research has demonstrated the involvement of presynaptic mAChRs in the inhibition of glutamatergic transmission in the hippocampus. Over the years, however, pharmacological and molecular genetic studies have yielded quite contradictory results regarding the mAChR subtype(s) involved. In this study, multi-electrode array technology was used for the pharmacological elucidation of the subtype of mAChR mediating the depression of excitatory synaptic transmission at the SC-CA1 synapse. Using selective antagonists (VU0255035, MT7, tripinamide, MT3) and allosteric potentiators (VU 10010, VU 0238429) the involvement of M1, M2, M4, and M5 subtypes was ruled out thereby implying a major modulatory role for M3 receptors in the inhibition of excitatory synaptic transmission in area CA1 of rat hippocampus.
2015
De Vin, F., Choi, S.M., Bolognesi, M.L., Lefebvre, R.A. (2015). Presynaptic M3 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in area CA1 of rat hippocampus. BRAIN RESEARCH, 1629, 260-269 [10.1016/j.brainres.2015.10.031].
De Vin, Filip; Choi, Sze Men; Bolognesi, Maria L.; Lefebvre, Romain A
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/546370
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact