We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luscher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory.

C. Ahn, Z. Bajnok, L. Palla, F. Ravanini (2008). NLIE of Dirichlet sine-Gordon Model for Boundary Bound States. NUCLEAR PHYSICS. B, 799, 379-402 [10.1016/j.nuclphysb.2008.01.020].

NLIE of Dirichlet sine-Gordon Model for Boundary Bound States

RAVANINI, FRANCESCO
2008

Abstract

We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luscher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory.
2008
C. Ahn, Z. Bajnok, L. Palla, F. Ravanini (2008). NLIE of Dirichlet sine-Gordon Model for Boundary Bound States. NUCLEAR PHYSICS. B, 799, 379-402 [10.1016/j.nuclphysb.2008.01.020].
C. Ahn; Z. Bajnok; L. Palla; F. Ravanini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/54600
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact