We study a class of two-phase inhomogeneous free boundary problems governed by elliptic equations in divergence form. In particular we prove that Lipschitz or flat free boundaries are C^(1,gamma). Our results apply to the classical Prandtl–Bachelor model in fluiddynamics.
De Silva, D., Ferrari, F., Salsa, S. (2016). Regularity of the free boundary for two-phase problems governed by divergence form equations and applications. NONLINEAR ANALYSIS, 138, 3-30 [10.1016/j.na.2015.11.013].
Regularity of the free boundary for two-phase problems governed by divergence form equations and applications
FERRARI, FAUSTO;
2016
Abstract
We study a class of two-phase inhomogeneous free boundary problems governed by elliptic equations in divergence form. In particular we prove that Lipschitz or flat free boundaries are C^(1,gamma). Our results apply to the classical Prandtl–Bachelor model in fluiddynamics.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NA138-2016.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
622.28 kB
Formato
Adobe PDF
|
622.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.