We study a class of two-phase inhomogeneous free boundary problems governed by elliptic equations in divergence form. In particular we prove that Lipschitz or flat free boundaries are C^(1,gamma). Our results apply to the classical Prandtl–Bachelor model in fluiddynamics.

De Silva, D., Ferrari, F., Salsa, S. (2016). Regularity of the free boundary for two-phase problems governed by divergence form equations and applications. NONLINEAR ANALYSIS, 138, 3-30 [10.1016/j.na.2015.11.013].

Regularity of the free boundary for two-phase problems governed by divergence form equations and applications

FERRARI, FAUSTO;
2016

Abstract

We study a class of two-phase inhomogeneous free boundary problems governed by elliptic equations in divergence form. In particular we prove that Lipschitz or flat free boundaries are C^(1,gamma). Our results apply to the classical Prandtl–Bachelor model in fluiddynamics.
2016
De Silva, D., Ferrari, F., Salsa, S. (2016). Regularity of the free boundary for two-phase problems governed by divergence form equations and applications. NONLINEAR ANALYSIS, 138, 3-30 [10.1016/j.na.2015.11.013].
De Silva, Daniela; Ferrari, Fausto; Salsa, Sandro
File in questo prodotto:
File Dimensione Formato  
NA138-2016.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 622.28 kB
Formato Adobe PDF
622.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/545189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact