Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Using 347.5 fb−1 of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244×103 signal events for the D+→K−π+e+νe decay channel are analyzed. This decay mode is dominated by the K⎯⎯⎯∗(892)0 contribution. We determine the K⎯⎯⎯∗(892)0 parameters: mK∗(892)0=(895.4±0.2±0.2) MeV/c2, Γ0K∗(892)0=(46.5±0.3±0.2) MeV/c2, and the Blatt-Weisskopf parameter rBW=2.1±0.5±0.5 (GeV/c)−1, where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q2=0 (rV=V(0)A1(0)=1.463±0.017±0.031, r2=A2(0)A1(0)=0.801±0.020±0.020) and the value of the axial-vector pole mass parametrizing the q2 variation of A1 and A2: mA=(2.63±0.10±0.13) GeV/c2. The S-wave fraction is equal to (5.79±0.16±0.15)%. Other signal components correspond to fractions below 1%. Using the D+→K−π+π+ channel as a normalization, we measure the D+ semileptonic branching fraction: ℬ(D+→K−π+e+νe)=(4.00±0.03±0.04±0.09)×10−2, where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A1 at q2=0: A1(0)=0.6200±0.0056±0.0065±0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the Kπ mass. These results confirm those obtained with Kπ production at small momentum transfer in fixed target experiments.
Sanchez, P.d.A., Lees, J.P., Poireau, V., Prencipe, E., Tisserand, V., Tico, J.G., et al. (2011). Analysis of the D(+) -> K(-) pi(+) e(+) nu(e) decay channel. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 83(7), 1-35 [10.1103/PhysRevD.83.072001].
Analysis of the D(+) -> K(-) pi(+) e(+) nu(e) decay channel
Sanchez, P. del Amo;Lees, J. P.;Poireau, V.;Prencipe, E.;Tisserand, V.;Tico, J. Garra;Grauges, E.;Martinelli, M.;Milanes, D. A.;Palano, A.;Pappagallo, M.;Eigen, G.;Stugu, B.;Sun, L.;Brown, D. N.;Kerth, L. T.;Kolomensky, Y.u. G.;Lynch, G.;Osipenkov, I. L.;Koch, H.;Schroeder, T.;Asgeirsson, D. J.;Hearty, C.;Mattison, T. S.;Mckenna, J. A.;Khan, A.;Randle Conde, A.;Blinov, V. E.;Buzykaev, A. R.;Druzhinin, V. P.;Golubev, V. B.;Kravchenko, E. A.;Onuchin, A. P.;Serednyakov, S. I.;Skovpen, Y.u. I.;Solodov, E. P.;Todyshev, K. Y.u.;Yushkov, A. N.;Bondioli, M.;Curry, S.;Kirkby, D.;Lankford, A. J.;Mandelkern, M.;Martin, E. C.;Stoker, D. P.;Atmacan, H.;Gary, J. W.;Liu, F.;Long, O.;Vitug, G. M.;Campagnari, C.;Hong, T. M.;Kovalskyi, D.;Richman, J. D.;West, C.;Eisner, A. M.;Heusch, C. A.;Kroseberg, J.;Lockman, W. S.;Martinez, A. J.;Schalk, T.;Schumm, B. A.;Seiden, A.;Winstrom, L. O.;Cheng, C. H.;Doll, D. A.;Echenard, B.;Hitlin, D. G.;Ongmongkolkul, P.;Porter, F. C.;Rakitin, A. Y.;Andreassen, R.;Dubrovin, M. S.;Mancinelli, G.;Meadows, B. T.;Sokoloff, M. D.;Bloom, P. C.;Ford, W. T.;Gaz, A.;Nagel, M.;Nauenberg, U.;Smith, J. G.;Wagner, S. R.;Ayad, R.;Toki, W. H.;Jasper, H.;Karbach, T. M.;Petzold, A.;Spaan, B.;Kobel, M. J.;Schubert, K. R.;Schwierz, R.;Bernard, D.;Verderi, M.;Clark, P. J.;Playfer, S.;Watson, J. E.;Andreotti, M.;Bettoni, D.;Bozzi, C.;Calabrese, R.;Cecchi, A.;Cibinetto, G.;Fioravanti, E.;Franchini, P.;Garzia, I.;Luppi, E.;Munerato, M.;Negrini, M.;Petrella, A.;Piemontese, L.;Baldini Ferroli, R.;Calcaterra, A.;de Sangro, R.;Finocchiaro, G.;Nicolaci, M.;Pacetti, S.;Patteri, P.;Peruzzi, I. M.;Piccolo, M.;Rama, M.;Zallo, A.;Contri, R.;Guido, E.;Lo Vetere, M.;Monge, M. R.;Passaggio, S.;PATRIGNANI, CLAUDIA;Robutti, E.;Tosi, S.;Bhuyan, B.;Prasad, V.;Lee, C. L.;Morii, M.;Adametz, A.;Marks, J.;Uwer, U.;Bernlochner, F. U.;Ebert, M.;Lacker, H. M.;Lueck, T.;Volk, A.;Dauncey, P. D.;Tibbetts, M.;Behera, P. K.;Mallik, U.;Chen, C.;Cochran, J.;Crawley, H. B.;Dong, L.;Meyer, W. T.;Prell, S.;Rosenberg, E. I.;Rubin, A. E.;Gritsan, A. V.;Guo, Z. J.;Arnaud, N.;Davier, M.;Derkach, D.;da Costa, J. Firmino;Grosdidier, G.;Le Diberder, F.;Lutz, A. M.;Malaescu, B.;Perez, A.;Roudeau, P.;Schune, M. H.;Serrano, J.;Sordini, V.;Stocchi, A.;Wang, L.;Wormser, G.;Lange, D. J.;Wright, D. M.;Bingham, I.;Chavez, C. A.;Coleman, J. P.;Fry, J. R.;Gabathuler, E.;Gamet, R.;Hutchcroft, D. E.;Payne, D. J.;Touramanis, C.;Bevan, A. J.;Di Lodovico, F.;Sacco, R.;Sigamani, M.;Cowan, G.;Paramesvaran, S.;Wren, A. C.;Davis, C. L.;Denig, A. G.;Fritsch, M.;Gradl, W.;Hafner, A.;Alwyn, K. E.;Bailey, D.;Barlow, R. J.;Jackson, G.;Lafferty, G. D.;Anderson, J.;Cenci, R.;Jawahery, A.;Roberts, D. A.;Simi, G.;Tuggle, J. M.;Dallapiccola, C.;Salvati, E.;Cowan, R.;Dujmic, D.;Sciolla, G.;Zhao, M.;Lindemann, D.;Patel, P. M.;Robertson, S. H.;Schram, M.;Biassoni, P.;Lazzaro, A.;Lombardo, V.;Palombo, F.;Stracka, S.;Cremaldi, L.;Godang, R.;Kroeger, R.;Sonnek, P.;Summers, D. J.;Nguyen, X.;Simard, M.;Taras, P.;De Nardo, G.;Monorchio, D.;Onorato, G.;Sciacca, C.;Raven, G.;Snoek, H. L.;Jessop, C. P.;Knoepfel, K. J.;Losecco, J. M.;Wang, W. F.;Corwin, L. A.;Honscheid, K.;Kass, R.;Morris, J. P.;Blount, N. L.;Brau, J.;Frey, R.;Igonkina, O.;Kolb, J. A.;Rahmat, R.;Sinev, N. B.;Strom, D.;Strube, J.;Torrence, E.;Castelli, G.;Feltresi, E.;Gagliardi, N.;Margoni, M.;Morandin, M.;Posocco, M.;Rotondo, M.;Simonetto, F.;Stroili, R.;Ben Haim, E.;Bonneaud, G. R.;Briand, H.;Calderini, G.;Chauveau, J.;Hamon, O.;Leruste, P.h.;Marchiori, G.;Ocariz, J.;Prendki, J.;Sitt, S.;Biasini, M.;Manoni, E.;Rossi, A.;Angelini, C.;Batignani, G.;Bettarini, S.;Carpinelli, M.;Casarosa, G.;Cervelli, A.;Forti, F.;Giorgi, M. A.;Lusiani, A.;Neri, N.;Paoloni, E.;Rizzo, G.;Walsh, J. J.;Pegna, D. Lopes;Lu, C.;Olsen, J.;Smith, A. J. S.;Telnov, A. V.;Anulli, F.;Baracchini, E.;Cavoto, G.;Faccini, R.;Ferrarotto, F.;Ferroni, F.;Gaspero, M.;Gioi, L. Li;Mazzoni, M. A.;Piredda, G.;Renga, F.;Hartmann, T.;Leddig, T.;Schroeder, H.;Waldi, R.;Adye, T.;Franek, B.;Olaiya, E. O.;Wilson, F. F.;Emery, S.;de Monchenault, G. Hamel;Vasseur, G.;Yeche, C.h.;Zito, M.;Allen, M. T.;Aston, D.;Bard, D. J.;Bartoldus, R.;Benitez, J. F.;Cartaro, C.;Convery, M. R.;Dorfan, J.;Dubois Felsmann, G. P.;Dunwoodie, W.;Field, R. C.;Sevilla, M. Franco;Fulsom, B. G.;Gabareen, A. M.;Graham, M. T.;Grenier, P.;Hast, C.;Innes, W. R.;Kelsey, M. H.;Kim, H.;Kim, P.;Kocian, M. L.;Leith, D. W. G. S.;Li, S.;Lindquist, B.;Luitz, S.;Luth, V.;Lynch, H. L.;Macfarlane, D. B.;Marsiske, H.;Muller, D. R.;Neal, H.;Nelson, S.;O'Grady, C. P.;Ofte, I.;Perl, M.;Pulliam, T.;Ratcliff, B. N.;Roodman, A.;Salnikov, A. A.;Santoro, V.;Schindler, R. H.;Schwiening, J.;Snyder, A.;Su, D.;Sullivan, M. K.;Sun, S.;Suzuki, K.;Thompson, J. M.;Va'Vra, J.;Wagner, A. P.;Weaver, M.;Wisniewski, W. J.;Wittgen, M.;Wright, D. H.;Wulsin, H. W.;Yarritu, A. K.;Young, C. C.;Ziegler, V.;Chen, X. R.;Park, W.;Purohit, M. V.;White, R. M.;Wilson, J. R.;Sekula, S. J.;Bellis, M.;Burchat, P. R.;Edwards, A. J.;Miyashita, T. S.;Ahmed, S.;Alam, M. S.;Ernst, J. A.;Pan, B.;Saeed, M. A.;Zain, S. B.;Guttman, N.;Soffer, A.;Lund, P.;Spanier, S. M.;Eckmann, R.;Ritchie, J. L.;Ruland, A. M.;Schilling, C. J.;Schwitters, R. F.;Wray, B. C.;Izen, J. M.;Lou, X. C.;Bianchi, F.;Gamba, D.;Pelliccioni, M.;Bomben, M.;Lanceri, L.;Vitale, L.;Lopez March, N.;Martinez Vidal, F.;Oyanguren, A.;Albert, J.;Banerjee, S.w.;Choi, H. H. F.;Hamano, K.;King, G. J.;Kowalewski, R.;Lewczuk, M. J.;Lindsay, C.;Nugent, I. M.;Roney, J. M.;Sobie, R. J.;Gershon, T. J.;Harrison, P. F.;Latham, T. E.;Puccio, E. M. T.;Band, H. R.;Dasu, S.;Flood, K. T.;Pan, Y.;Prepost, R.;Vuosalo, C. O.;Wu, S. L.;Collaboration, Babar
2011
Abstract
Using 347.5 fb−1 of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244×103 signal events for the D+→K−π+e+νe decay channel are analyzed. This decay mode is dominated by the K⎯⎯⎯∗(892)0 contribution. We determine the K⎯⎯⎯∗(892)0 parameters: mK∗(892)0=(895.4±0.2±0.2) MeV/c2, Γ0K∗(892)0=(46.5±0.3±0.2) MeV/c2, and the Blatt-Weisskopf parameter rBW=2.1±0.5±0.5 (GeV/c)−1, where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q2=0 (rV=V(0)A1(0)=1.463±0.017±0.031, r2=A2(0)A1(0)=0.801±0.020±0.020) and the value of the axial-vector pole mass parametrizing the q2 variation of A1 and A2: mA=(2.63±0.10±0.13) GeV/c2. The S-wave fraction is equal to (5.79±0.16±0.15)%. Other signal components correspond to fractions below 1%. Using the D+→K−π+π+ channel as a normalization, we measure the D+ semileptonic branching fraction: ℬ(D+→K−π+e+νe)=(4.00±0.03±0.04±0.09)×10−2, where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A1 at q2=0: A1(0)=0.6200±0.0056±0.0065±0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the Kπ mass. These results confirm those obtained with Kπ production at small momentum transfer in fixed target experiments.
Sanchez, P.d.A., Lees, J.P., Poireau, V., Prencipe, E., Tisserand, V., Tico, J.G., et al. (2011). Analysis of the D(+) -> K(-) pi(+) e(+) nu(e) decay channel. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 83(7), 1-35 [10.1103/PhysRevD.83.072001].
Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; P...espandi
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/543542
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
50
33
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.