Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that alpha2-3-sialylated O-glycans and alpha2-6- and alpha2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented alpha2-6-sialylated N-glycans; ST3Gal1 contributes for the alpha2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased alpha2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.
Videira P.A., Amado I.F., Crespo H.J., Alguerò M.C., Dall'Olio F., Cabral M.G., et al. (2008). Surface alpha2-3- and alpha2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis. GLYCOCONJUGATE JOURNAL, 25, 259-268 [10.1007/s10719-007-9092-6].
Surface alpha2-3- and alpha2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis
DALL'OLIO, FABIO;
2008
Abstract
Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that alpha2-3-sialylated O-glycans and alpha2-6- and alpha2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented alpha2-6-sialylated N-glycans; ST3Gal1 contributes for the alpha2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased alpha2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.