An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points; this even yields the exact value in restricted areas of the domain. Using these inequalities we improve a previous lower bound for the natural pseu- dodistance to assess dissimilarity between the shapes of two objects from a sampling of them. Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.

Niccolò, C., Massimo, F., Claudia, L. (2015). Estimating multidimensional persistent homology through a finite sampling. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 25, 187-205.

Estimating multidimensional persistent homology through a finite sampling

CAVAZZA, NICCOLO';FERRI, MASSIMO;LANDI, CLAUDIA
2015

Abstract

An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points; this even yields the exact value in restricted areas of the domain. Using these inequalities we improve a previous lower bound for the natural pseu- dodistance to assess dissimilarity between the shapes of two objects from a sampling of them. Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.
2015
Niccolò, C., Massimo, F., Claudia, L. (2015). Estimating multidimensional persistent homology through a finite sampling. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 25, 187-205.
Niccolò, Cavazza; Massimo, Ferri; Claudia, Landi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/541268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact