We consider networks in which random walkers are removed because of the failure of specific nodes. We interpret the rate of loss as a measure of the importance of nodes, a notion we denote as failure centrality. We show that the degree of the node is not sufficient to determine this measure and that, in a first approximation, the shortest loops through the node have to be taken into account. We propose approximations of the failure centrality which are valid for temporal-varying failures, and we dwell on the possibility of externally changing the relative importance of nodes in a given network by exploiting the interference between the loops of a node and the cycles of the temporal pattern of failures. In the limit of long failure cycles we show analytically that the escape in a node is larger than the one estimated from a stochastic failure with the same failure probability. We test our general formalism in two real-world networks (air-transportation and e-mail users) and show how communities lead to deviations from predictions for failures in hubs.
Knight, G., Cristadoro, G., Altmann, E.G. (2015). Temporal-varying failures of nodes in networks. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 92(2), 022810-1-022810-6 [10.1103/PhysRevE.92.022810].
Temporal-varying failures of nodes in networks
KNIGHT, GEORGIE SAMUEL;CRISTADORO, GIAMPAOLO;
2015
Abstract
We consider networks in which random walkers are removed because of the failure of specific nodes. We interpret the rate of loss as a measure of the importance of nodes, a notion we denote as failure centrality. We show that the degree of the node is not sufficient to determine this measure and that, in a first approximation, the shortest loops through the node have to be taken into account. We propose approximations of the failure centrality which are valid for temporal-varying failures, and we dwell on the possibility of externally changing the relative importance of nodes in a given network by exploiting the interference between the loops of a node and the cycles of the temporal pattern of failures. In the limit of long failure cycles we show analytically that the escape in a node is larger than the one estimated from a stochastic failure with the same failure probability. We test our general formalism in two real-world networks (air-transportation and e-mail users) and show how communities lead to deviations from predictions for failures in hubs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.