Gaussian mixture models (GMM) are commonly employed in nonparametric supervised classification. In high-dimensional problems it is often the case that information relevant to the separation of the classes is contained in a few directions. A GMM fitting procedure oriented to supervised classification is proposed, with the aim of reducing the number of free parameters. It resorts to projection pursuit as a dimension reduction method and combines it with GM modelling of class-conditional densities. In its derivation, issues regarding the forward and backward projection pursuit algorithms are discussed. The proposed procedure avoids the “curse of dimensionality”, is able to model structure in subspaces and regularizes the classification model. Its performance is illustrated on a simulation experiment and on a real data set, in comparison with other GMM-based classification methods.
Calò D. G. (2007). Gaussian mixture model classification: A projection pursuit approach. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 52(1), 471-482.
Gaussian mixture model classification: A projection pursuit approach
CALO', DANIELA GIOVANNA
2007
Abstract
Gaussian mixture models (GMM) are commonly employed in nonparametric supervised classification. In high-dimensional problems it is often the case that information relevant to the separation of the classes is contained in a few directions. A GMM fitting procedure oriented to supervised classification is proposed, with the aim of reducing the number of free parameters. It resorts to projection pursuit as a dimension reduction method and combines it with GM modelling of class-conditional densities. In its derivation, issues regarding the forward and backward projection pursuit algorithms are discussed. The proposed procedure avoids the “curse of dimensionality”, is able to model structure in subspaces and regularizes the classification model. Its performance is illustrated on a simulation experiment and on a real data set, in comparison with other GMM-based classification methods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.