Soils originating from weathering processes present considerable heterogeneity in their composition, which can make it difficult to analyse their behaviour in a systematic way. For the granitic saprolites discussed in this paper, based on a trend between soil density and weathering degree, there appears to be two different domains of behaviour, a granular domain and a clay matrix one, according to the degree of weathering reached. Recognition of these domains can reduce the apparent scatter of data for the engineering behaviour of weathered soils. A number of one-dimensional compression tests are presented for saprolitic soils from Hong Kong having different weathering degrees. In addition,isotropic and one-dimensional compression tests from the literature on other saprolites from Hong Kong and around the world were reanalysed and used to identify possible trends in the mechanisms of compression for these two domains. From practical considerations, the trends considered were between compressibility and common engineering grading descriptors. An attempt was also made to provide the physical explanations behind the behaviour observed, and the particle breakage was investigated in detail, both from a quantitative and qualitative point of view. It was found that the values of relative breakage (Hardin in ASCE J Geotech Geoenviron Eng 111(10):1177–1192, 1985), for a same stress level, might be very similar for soils having different compressibility values and different initial gradings. When studying particle breakage in further detail, it can be observed that it is linked to the amount of large particles and their characteristics. The maximum particle size, rather than the amount of fines in a mixture, may be a better predictor for differences in compressibility and breakage.

Mechanisms of compression in well-graded saprolitic soils / Rocchi, I; Coop, M.R.. - In: BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT. - ISSN 1435-9529. - STAMPA. - 75:(2016), pp. 1727-1739. [10.1007/s10064-015-0841-7]

Mechanisms of compression in well-graded saprolitic soils

ROCCHI, IRENE;
2016

Abstract

Soils originating from weathering processes present considerable heterogeneity in their composition, which can make it difficult to analyse their behaviour in a systematic way. For the granitic saprolites discussed in this paper, based on a trend between soil density and weathering degree, there appears to be two different domains of behaviour, a granular domain and a clay matrix one, according to the degree of weathering reached. Recognition of these domains can reduce the apparent scatter of data for the engineering behaviour of weathered soils. A number of one-dimensional compression tests are presented for saprolitic soils from Hong Kong having different weathering degrees. In addition,isotropic and one-dimensional compression tests from the literature on other saprolites from Hong Kong and around the world were reanalysed and used to identify possible trends in the mechanisms of compression for these two domains. From practical considerations, the trends considered were between compressibility and common engineering grading descriptors. An attempt was also made to provide the physical explanations behind the behaviour observed, and the particle breakage was investigated in detail, both from a quantitative and qualitative point of view. It was found that the values of relative breakage (Hardin in ASCE J Geotech Geoenviron Eng 111(10):1177–1192, 1985), for a same stress level, might be very similar for soils having different compressibility values and different initial gradings. When studying particle breakage in further detail, it can be observed that it is linked to the amount of large particles and their characteristics. The maximum particle size, rather than the amount of fines in a mixture, may be a better predictor for differences in compressibility and breakage.
2016
Mechanisms of compression in well-graded saprolitic soils / Rocchi, I; Coop, M.R.. - In: BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT. - ISSN 1435-9529. - STAMPA. - 75:(2016), pp. 1727-1739. [10.1007/s10064-015-0841-7]
Rocchi, I; Coop, M.R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/537628
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact