Human aging is associated with a decrease in tissue functions combined with a decline in stem cells frequency and activity followed by a loss of regenerative capacity. The molecular mechanisms behind this senescence remain largely obscure, precluding targeted approaches to counteract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors, we identified a specific switch in miRNA expression during aging, revealing a miR-196a upregulation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth factor secretion. These findings, along with the progressive decrease of HOXB7 levels observed during skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior lifetime, providing a better understanding of bone senescence and leading to an optimization of MSC performance.

Mesenchymal progenitors aging highlights a mir-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis / Candini, Olivia; Spano, Carlotta; Murgia, Alba; Grisendi, Giulia; Veronesi, Elena; Piccinno, Maria Serena; Ferracin, Manuela; Negrini, Massimo; Giacobbi, Francesca; Bambi, Franco; Horwitz, Edwin Mark; Conte, Pierfranco; Paolucci, Paolo; Dominici, Massimo. - In: STEM CELLS. - ISSN 1066-5099. - STAMPA. - 33:3(2015), pp. 939-950. [10.1002/stem.1897]

Mesenchymal progenitors aging highlights a mir-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis

FERRACIN, MANUELA;
2015

Abstract

Human aging is associated with a decrease in tissue functions combined with a decline in stem cells frequency and activity followed by a loss of regenerative capacity. The molecular mechanisms behind this senescence remain largely obscure, precluding targeted approaches to counteract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors, we identified a specific switch in miRNA expression during aging, revealing a miR-196a upregulation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth factor secretion. These findings, along with the progressive decrease of HOXB7 levels observed during skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior lifetime, providing a better understanding of bone senescence and leading to an optimization of MSC performance.
2015
Mesenchymal progenitors aging highlights a mir-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis / Candini, Olivia; Spano, Carlotta; Murgia, Alba; Grisendi, Giulia; Veronesi, Elena; Piccinno, Maria Serena; Ferracin, Manuela; Negrini, Massimo; Giacobbi, Francesca; Bambi, Franco; Horwitz, Edwin Mark; Conte, Pierfranco; Paolucci, Paolo; Dominici, Massimo. - In: STEM CELLS. - ISSN 1066-5099. - STAMPA. - 33:3(2015), pp. 939-950. [10.1002/stem.1897]
Candini, Olivia; Spano, Carlotta; Murgia, Alba; Grisendi, Giulia; Veronesi, Elena; Piccinno, Maria Serena; Ferracin, Manuela; Negrini, Massimo; Giacobbi, Francesca; Bambi, Franco; Horwitz, Edwin Mark; Conte, Pierfranco; Paolucci, Paolo; Dominici, Massimo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/537020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 56
social impact