This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space (V^2n , ω). Successively, in Section 3, we apply our construction in the setting of Heisenberg groups ℍ^n , n ≥ 1, to write in coordinates the exterior differential of the so-called Rumin’s complex of differential forms in ℍ^n .

Baldi, A., Barnabei, M., Franchi, B. (2016). A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups. ACTA MATHEMATICA SINICA, 32(3), 265-285 [10.1007/s10114-016-4620-6].

A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups

BALDI, ANNALISA;BARNABEI, MARILENA;FRANCHI, BRUNO
2016

Abstract

This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space (V^2n , ω). Successively, in Section 3, we apply our construction in the setting of Heisenberg groups ℍ^n , n ≥ 1, to write in coordinates the exterior differential of the so-called Rumin’s complex of differential forms in ℍ^n .
2016
Baldi, A., Barnabei, M., Franchi, B. (2016). A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups. ACTA MATHEMATICA SINICA, 32(3), 265-285 [10.1007/s10114-016-4620-6].
Baldi, Annalisa; Barnabei, Marilena; Franchi, Bruno
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/535686
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact