We consider the distance function from the boundary of an open bounded set Ω ⊂ R n associated to a Riemannian metric with C 1 , 1 coefficients. We show that the C 1 , 1 regularity propagates, towards the boundary ∂ Ω , along the distance minimizing geodesics. Hence, we show that the cut-locus is invariant with respect to the generalized gradient flow asso- ciated to the distance function and that it has the same homotopy type as Ω .

Albano, P. (2014). The regularity of the distance function propagates along minimizing geodesics. NONLINEAR ANALYSIS, 95, 308-312 [10.1016/j.na.2013.08.017].

The regularity of the distance function propagates along minimizing geodesics

ALBANO, PAOLO
2014

Abstract

We consider the distance function from the boundary of an open bounded set Ω ⊂ R n associated to a Riemannian metric with C 1 , 1 coefficients. We show that the C 1 , 1 regularity propagates, towards the boundary ∂ Ω , along the distance minimizing geodesics. Hence, we show that the cut-locus is invariant with respect to the generalized gradient flow asso- ciated to the distance function and that it has the same homotopy type as Ω .
2014
Albano, P. (2014). The regularity of the distance function propagates along minimizing geodesics. NONLINEAR ANALYSIS, 95, 308-312 [10.1016/j.na.2013.08.017].
Albano, P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/531838
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact