Any kind of device or machine requires a substrate, energy, and information signals. If we wish to operate at the nanometer scale, we must use molecules as substrates. Energy- and signal-processing at a molecular level relies on cause/effect relationships between the input supplied and the kind of process obtained. We have classified energy- and signal-processing at the molecular level according to the nature of the input (electronic, photonic, or chemical) and the nature of the obtained effect (electronic, photonic, or chemical process that follows). By coupling the three kinds of inputs with the three types of resulting processes, nine types of molecular-based processes (electronic, photonic, chemionic, electrophotonic, electrochemionic, photoelectronic, photochemionic, chemiophotonic, and chemioelectronic) can be identified. In this concept article, looking at molecular transformations in an unconventional way, we have tried to give a flavor of some of the new features that project the old science of chemistry towards novel achievements.

V. Balzani, A. Credi, M. Venturi (2008). Processing energy and signals by molecular and supramolecular systems. CHEMISTRY-A EUROPEAN JOURNAL, 14(1), 26-39 [10.1002/chem.200701397].

Processing energy and signals by molecular and supramolecular systems

BALZANI, VINCENZO;CREDI, ALBERTO;VENTURI, MARGHERITA
2008

Abstract

Any kind of device or machine requires a substrate, energy, and information signals. If we wish to operate at the nanometer scale, we must use molecules as substrates. Energy- and signal-processing at a molecular level relies on cause/effect relationships between the input supplied and the kind of process obtained. We have classified energy- and signal-processing at the molecular level according to the nature of the input (electronic, photonic, or chemical) and the nature of the obtained effect (electronic, photonic, or chemical process that follows). By coupling the three kinds of inputs with the three types of resulting processes, nine types of molecular-based processes (electronic, photonic, chemionic, electrophotonic, electrochemionic, photoelectronic, photochemionic, chemiophotonic, and chemioelectronic) can be identified. In this concept article, looking at molecular transformations in an unconventional way, we have tried to give a flavor of some of the new features that project the old science of chemistry towards novel achievements.
2008
V. Balzani, A. Credi, M. Venturi (2008). Processing energy and signals by molecular and supramolecular systems. CHEMISTRY-A EUROPEAN JOURNAL, 14(1), 26-39 [10.1002/chem.200701397].
V. Balzani; A. Credi; M. Venturi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/53167
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 120
  • ???jsp.display-item.citation.isi??? 107
social impact