We consider a non-linear system of m equations in divergence form and a boundary condition: {Sigma(n)(i=1) partial derivative/partial derivative x(i) (A(i)(alpha)(x, Du(x))) = 0, 1 <= alpha <= m, in Omega u = (u) over tilde on partial derivative Omega. The functions A(i)(alpha)(x, z) are Holder continuous with respect to x and vertical bar z vertical bar(p) - c(1) <= Sigma(m)(alpha=1) Sigma(n)(i=1) A(i)(alpha)(x, z)z(i)(alpha) <= c(2)(1 + vertical bar z vertical bar)(q), 2 <= p <= q. We prove the existence of a weak solution u in ((u) over tilde + W-0(1,p)(Omega; R-m)) boolean AND W-loc(1,q)(Omega; R-m), provided p and q are close enough and under suitable sununability assumptions on the boundary datum (u) over tilde.
Cupini, G., Leonetti, F., Mascolo, E. (2015). Existence of weak solutions for elliptic systems with p,q-growth. ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA, 40, 645-658 [10.5186/aasfm.2015.4035].
Existence of weak solutions for elliptic systems with p,q-growth
CUPINI, GIOVANNI;
2015
Abstract
We consider a non-linear system of m equations in divergence form and a boundary condition: {Sigma(n)(i=1) partial derivative/partial derivative x(i) (A(i)(alpha)(x, Du(x))) = 0, 1 <= alpha <= m, in Omega u = (u) over tilde on partial derivative Omega. The functions A(i)(alpha)(x, z) are Holder continuous with respect to x and vertical bar z vertical bar(p) - c(1) <= Sigma(m)(alpha=1) Sigma(n)(i=1) A(i)(alpha)(x, z)z(i)(alpha) <= c(2)(1 + vertical bar z vertical bar)(q), 2 <= p <= q. We prove the existence of a weak solution u in ((u) over tilde + W-0(1,p)(Omega; R-m)) boolean AND W-loc(1,q)(Omega; R-m), provided p and q are close enough and under suitable sununability assumptions on the boundary datum (u) over tilde.File | Dimensione | Formato | |
---|---|---|---|
vol40pp645-658.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
210.53 kB
Formato
Adobe PDF
|
210.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.