We consider a non-linear system of m equations in divergence form and a boundary condition: {Sigma(n)(i=1) partial derivative/partial derivative x(i) (A(i)(alpha)(x, Du(x))) = 0, 1 <= alpha <= m, in Omega u = (u) over tilde on partial derivative Omega. The functions A(i)(alpha)(x, z) are Holder continuous with respect to x and vertical bar z vertical bar(p) - c(1) <= Sigma(m)(alpha=1) Sigma(n)(i=1) A(i)(alpha)(x, z)z(i)(alpha) <= c(2)(1 + vertical bar z vertical bar)(q), 2 <= p <= q. We prove the existence of a weak solution u in ((u) over tilde + W-0(1,p)(Omega; R-m)) boolean AND W-loc(1,q)(Omega; R-m), provided p and q are close enough and under suitable sununability assumptions on the boundary datum (u) over tilde.

Cupini, G., Leonetti, F., Mascolo, E. (2015). Existence of weak solutions for elliptic systems with p,q-growth. ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA, 40, 645-658 [10.5186/aasfm.2015.4035].

Existence of weak solutions for elliptic systems with p,q-growth

CUPINI, GIOVANNI;
2015

Abstract

We consider a non-linear system of m equations in divergence form and a boundary condition: {Sigma(n)(i=1) partial derivative/partial derivative x(i) (A(i)(alpha)(x, Du(x))) = 0, 1 <= alpha <= m, in Omega u = (u) over tilde on partial derivative Omega. The functions A(i)(alpha)(x, z) are Holder continuous with respect to x and vertical bar z vertical bar(p) - c(1) <= Sigma(m)(alpha=1) Sigma(n)(i=1) A(i)(alpha)(x, z)z(i)(alpha) <= c(2)(1 + vertical bar z vertical bar)(q), 2 <= p <= q. We prove the existence of a weak solution u in ((u) over tilde + W-0(1,p)(Omega; R-m)) boolean AND W-loc(1,q)(Omega; R-m), provided p and q are close enough and under suitable sununability assumptions on the boundary datum (u) over tilde.
2015
Cupini, G., Leonetti, F., Mascolo, E. (2015). Existence of weak solutions for elliptic systems with p,q-growth. ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA, 40, 645-658 [10.5186/aasfm.2015.4035].
Cupini, Giovanni; Leonetti, Francesco; Mascolo, Elvira
File in questo prodotto:
File Dimensione Formato  
vol40pp645-658.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 210.53 kB
Formato Adobe PDF
210.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/529491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact