The hypoxic environment is a crucial component of the cancer stem cell niche and it is capable of eliciting stem cell features in cancer cells. We previously reported that SNAI2 up-regulates the expression of Carbonic Anhydrase iso-enzyme 9 (CA9) in hypoxic MCF7 cells. Here we show that SNAI2 down-regulates miR34a expression in hypoxic MCF7 cell-derived mammospheres. Next, we report on the capability of miR34a to decrease CA9 mRNA stability and CA9 protein expression. We also convey that the over-expression of cloned CA9-mRNA-3'UTR increases the mRNA half-life and protein levels of two miR34a targets JAGGED1 and NOTCH3. The data here reported shows that the SNAI2-dependent down-regulation of miR34a substantially contributes to the post-transcriptional up-regulation of CA9, and that CA9-mRNA-3'UTR acts as an endogenous microRNA sponge. We conclude that CA9/miR34 interplay shares in the hypoxic regulation of mammospheres and therefore may play a relevant role in the hypoxic breast cancer stem cell niche. This article is protected by copyright. All rights reserved.

Carbonic anhydrase 9 mRNA/microRNA34a interplay in hypoxic human mammospheres

DE CAROLIS, SABRINA;BERTONI, SARA;D'ANELLO, LAURA;PAPI, ALESSIO;CRICCA, MONICA;BONAFE', MASSIMILIANO
2016

Abstract

The hypoxic environment is a crucial component of the cancer stem cell niche and it is capable of eliciting stem cell features in cancer cells. We previously reported that SNAI2 up-regulates the expression of Carbonic Anhydrase iso-enzyme 9 (CA9) in hypoxic MCF7 cells. Here we show that SNAI2 down-regulates miR34a expression in hypoxic MCF7 cell-derived mammospheres. Next, we report on the capability of miR34a to decrease CA9 mRNA stability and CA9 protein expression. We also convey that the over-expression of cloned CA9-mRNA-3'UTR increases the mRNA half-life and protein levels of two miR34a targets JAGGED1 and NOTCH3. The data here reported shows that the SNAI2-dependent down-regulation of miR34a substantially contributes to the post-transcriptional up-regulation of CA9, and that CA9-mRNA-3'UTR acts as an endogenous microRNA sponge. We conclude that CA9/miR34 interplay shares in the hypoxic regulation of mammospheres and therefore may play a relevant role in the hypoxic breast cancer stem cell niche. This article is protected by copyright. All rights reserved.
JOURNAL OF CELLULAR PHYSIOLOGY
De Carolis, Sabrina; Bertoni, Sara; Nati, Marina; D'Anello, Laura; Papi, Alessio; Tesei, Anna; Cricca, Monica; Bonafé, Massimiliano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/528752
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact