A new apparatus is described that measures interparticle friction between sand-sized grains over relatively large displacements and also under immersion in a fluid. Its relatively simple design allows the key calibrations to be checked by statics. An analysis of the geometry of simple spherical particle contacts and the forces at those contacts revealed that there are strict constraints on the permissible stiffness of the interparticle friction apparatus to avoid stick-slip behaviour. Tests on ball bearings gave highly repeatable data, while others on glass ballotini revealed a significant effect of ambient humidity on the data obtained. The interparticle friction was found to increase with the roughness of the ballotini. Immersion in water increased the interparticle friction slightly for both the ballotini and quartz sand particles, while immersion in oil reduced the friction considerably for the quartz sand, especially at higher contact force levels.
Cavarretta, I., Rocchi, I., Matthew, R.C. (2011). A new interparticle friction apparatus for granular materials. CANADIAN GEOTECHNICAL JOURNAL, 48(12), 1829-1840 [10.1139/T11-077].
A new interparticle friction apparatus for granular materials
ROCCHI, IRENE;
2011
Abstract
A new apparatus is described that measures interparticle friction between sand-sized grains over relatively large displacements and also under immersion in a fluid. Its relatively simple design allows the key calibrations to be checked by statics. An analysis of the geometry of simple spherical particle contacts and the forces at those contacts revealed that there are strict constraints on the permissible stiffness of the interparticle friction apparatus to avoid stick-slip behaviour. Tests on ball bearings gave highly repeatable data, while others on glass ballotini revealed a significant effect of ambient humidity on the data obtained. The interparticle friction was found to increase with the roughness of the ballotini. Immersion in water increased the interparticle friction slightly for both the ballotini and quartz sand particles, while immersion in oil reduced the friction considerably for the quartz sand, especially at higher contact force levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.