The accidental spill of volatile solvents or the release of flammable gases within equipment and buildings is likely to form fuel concentration gradients unless efficient mixing is provided. As a consequence, even small amounts of fuel can form flammable clouds, and partial volume deflagrations may occur. Nevertheless, few indications are given in international guide-lines for vent sizing and only over-conservative well-mixed stoichiometric assumptions are used. In this paper, we propose a predictive methodology for the evaluation of the dynamics of partial volume deflagration, aiming at defining useful correlations for the design of vent devices, starting from the fundamental equation for the rate of pressure rise and flame propagation in closed vessel. We define a 'stratified gas deflagration index' KG(m), where m is the filling ratio, and use it with the most common design equations for vent sizing. The approach has been validated by means of a CFD code for the simulation of stratified laminar methane-air explosion by vary-ing both filling ratio and volume. © 2007 Institution of Chemical Engineers.

Orlando, F., Salzano, E., Marra, F.S., Russo, G. (2007). Vent sizing criteria for partial volume deflacration. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 85(6 B), 549-558 [10.1205/psep05105].

Vent sizing criteria for partial volume deflacration

SALZANO, ERNESTO;
2007

Abstract

The accidental spill of volatile solvents or the release of flammable gases within equipment and buildings is likely to form fuel concentration gradients unless efficient mixing is provided. As a consequence, even small amounts of fuel can form flammable clouds, and partial volume deflagrations may occur. Nevertheless, few indications are given in international guide-lines for vent sizing and only over-conservative well-mixed stoichiometric assumptions are used. In this paper, we propose a predictive methodology for the evaluation of the dynamics of partial volume deflagration, aiming at defining useful correlations for the design of vent devices, starting from the fundamental equation for the rate of pressure rise and flame propagation in closed vessel. We define a 'stratified gas deflagration index' KG(m), where m is the filling ratio, and use it with the most common design equations for vent sizing. The approach has been validated by means of a CFD code for the simulation of stratified laminar methane-air explosion by vary-ing both filling ratio and volume. © 2007 Institution of Chemical Engineers.
2007
Orlando, F., Salzano, E., Marra, F.S., Russo, G. (2007). Vent sizing criteria for partial volume deflacration. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 85(6 B), 549-558 [10.1205/psep05105].
Orlando, F.; Salzano, E.; Marra, F.S.; Russo, G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/526519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact