The worldwide distributed genus Monochamus Megerle, 1821 (Coleoptera Cerambicydae) comprises beetles that may become pests of economic importance in conifer stands in the Nearctic and Palearctic Regions. Besides direct damage due to the larval tunnelling habits, they have also been recognized as main vectors of the phytoparasitic nematode Bursaphelenchus xylophilus (Steiner & Buhrer, 1934) (Nematoda Aphelenchoididae). We analysed the complete mitochondrial cytochrome oxidase I gene and a fragment of the small subunit RNA gene sequences (1536 base pairs) in the five European species. These are: Monochamus galloprovincialis (Olivier, 1795), morphologically distinguished in two subspecies M. galloprovincialis galloprovincialis (Olivier, 1795) and M. galloprovincialis pistor (Germar, 1818); Monochamus sutor (Linneus 1758); Monochamus saltuarius (Gebler 1830); Monochamus sartor (Fabricius, 1787) and Monochamus urussovi (Fischer, 1806). For appropriate comparisons, also the Asiatic Monochamus alternatus Hope, 1842 and a Japanese M. saltuarius sample have been analysed. Both genes show an absolute identity between the two subspecies of M. galloprovincialis and a strong affinity between M. sartor and M. urussovi: the morphological subdivisions of the former taxon in two subspecies and of the latter in two entities of specific level are therefore not supported genetically. On the other hand, the Italian and the Japanese samples of M. saltuarius always cluster together in all trees, and for the remaining taxa, no doubt about their rank of specific differentiation emerges from present analyses. From a phyletic point of view, tree topology indicates the Japanese M. alternatus as the most differentiated taxon and the Euroasiatic M. saltuarius as basal to all other strictly European entities. Chromosome analyses show that the diploid autosomal complement ranges from 18 in M. saltuarius to 20 in M. galloprovincialis, and 22 in M. sartor, but a XX-Xy(p) sex determining system is shared by all analysed taxa. The M. saltuarius karyotype appears as the most primitive from which the others may be derived through Robertsonian fissions. Karyological data therefore agree with molecular analyses in indicating a basal position of Euroasiatic M. saltuarius with respect to the group of European Monochamus taxa; among these, M. galloprovincialis and M. sartor represent two clearly diverging evolutionary units. Furthermore, karyotype analyses substantiate molecular conclusions about the identity between M. galloprovincialis galloprovincialis and M. galloprovincialis pistor.
CESARI M., MARESCALCHI O., FRANCARDI V., MANTOVANI B. (2005). Taxonomy and phylogeny of European Monochamus species: first molecular and karyological data. JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, 43, 1-7 [10.1111/j.1439-0469.2004.00279.x].
Taxonomy and phylogeny of European Monochamus species: first molecular and karyological data.
CESARI, MICHELE;MARESCALCHI, OMBRETTA;MANTOVANI, BARBARA
2005
Abstract
The worldwide distributed genus Monochamus Megerle, 1821 (Coleoptera Cerambicydae) comprises beetles that may become pests of economic importance in conifer stands in the Nearctic and Palearctic Regions. Besides direct damage due to the larval tunnelling habits, they have also been recognized as main vectors of the phytoparasitic nematode Bursaphelenchus xylophilus (Steiner & Buhrer, 1934) (Nematoda Aphelenchoididae). We analysed the complete mitochondrial cytochrome oxidase I gene and a fragment of the small subunit RNA gene sequences (1536 base pairs) in the five European species. These are: Monochamus galloprovincialis (Olivier, 1795), morphologically distinguished in two subspecies M. galloprovincialis galloprovincialis (Olivier, 1795) and M. galloprovincialis pistor (Germar, 1818); Monochamus sutor (Linneus 1758); Monochamus saltuarius (Gebler 1830); Monochamus sartor (Fabricius, 1787) and Monochamus urussovi (Fischer, 1806). For appropriate comparisons, also the Asiatic Monochamus alternatus Hope, 1842 and a Japanese M. saltuarius sample have been analysed. Both genes show an absolute identity between the two subspecies of M. galloprovincialis and a strong affinity between M. sartor and M. urussovi: the morphological subdivisions of the former taxon in two subspecies and of the latter in two entities of specific level are therefore not supported genetically. On the other hand, the Italian and the Japanese samples of M. saltuarius always cluster together in all trees, and for the remaining taxa, no doubt about their rank of specific differentiation emerges from present analyses. From a phyletic point of view, tree topology indicates the Japanese M. alternatus as the most differentiated taxon and the Euroasiatic M. saltuarius as basal to all other strictly European entities. Chromosome analyses show that the diploid autosomal complement ranges from 18 in M. saltuarius to 20 in M. galloprovincialis, and 22 in M. sartor, but a XX-Xy(p) sex determining system is shared by all analysed taxa. The M. saltuarius karyotype appears as the most primitive from which the others may be derived through Robertsonian fissions. Karyological data therefore agree with molecular analyses in indicating a basal position of Euroasiatic M. saltuarius with respect to the group of European Monochamus taxa; among these, M. galloprovincialis and M. sartor represent two clearly diverging evolutionary units. Furthermore, karyotype analyses substantiate molecular conclusions about the identity between M. galloprovincialis galloprovincialis and M. galloprovincialis pistor.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.