In this paper, we illustrate a Mobile Wireless Vehicular Environment Simulation (MoVES) framework for the parallel and distributed simulation of vehicular wireless ad hoc networks (VANETs). The proposed framework supports extensible, module-based and layered modeling, and scalable, accurate and efficient simulation of vehicular scenarios integrated with wireless communication and mobile services/applications. The vehicular layer includes models for vehicles, synthetic and trace-driven mobility, driver behavior, GPS-based street maps, intersection policies and traffic lights. The wireless communication layer currently includes models for physical propagation, and a network protocol stack including IEEE 802.11 Medium Access Control, up to the Application layer. MoVES provides a platform for microscopic modeling and simulation-based analysis of wireless vehicular scenarios and communication-based services and applications, like Intelligent Transportation Systems, communication-based monitoring/control and info-mobility services. The framework includes design solutions for scalable, accurate and efficient parallel and distributed simulation of complex, vehicular communication scenarios executed over cost-effective, commercial-off-the-shelf (COTS) simulation architectures. Dynamic model partition and adaptation-based load balancing solutions have been designed by exploiting common assumptions and model characteristics, in a user-transparent way. Test-bed performance evaluation for realistic scenarios has shown the effectiveness of MoVES in terms of simulation efficiency, scalability, adaptation and simulation accuracy.
Titolo: | MoVES: a Framework for Parallel and Distributed Simulation of Wireless Vehicular Ad Hoc Networks | |
Autore/i: | BONONI, LUCIANO; DI FELICE, MARCO; D'ANGELO, GABRIELE; Bracuto M.; DONATIELLO, LORENZO | |
Autore/i Unibo: | ||
Anno: | 2008 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.comnet.2007.09.015 | |
Abstract: | In this paper, we illustrate a Mobile Wireless Vehicular Environment Simulation (MoVES) framework for the parallel and distributed simulation of vehicular wireless ad hoc networks (VANETs). The proposed framework supports extensible, module-based and layered modeling, and scalable, accurate and efficient simulation of vehicular scenarios integrated with wireless communication and mobile services/applications. The vehicular layer includes models for vehicles, synthetic and trace-driven mobility, driver behavior, GPS-based street maps, intersection policies and traffic lights. The wireless communication layer currently includes models for physical propagation, and a network protocol stack including IEEE 802.11 Medium Access Control, up to the Application layer. MoVES provides a platform for microscopic modeling and simulation-based analysis of wireless vehicular scenarios and communication-based services and applications, like Intelligent Transportation Systems, communication-based monitoring/control and info-mobility services. The framework includes design solutions for scalable, accurate and efficient parallel and distributed simulation of complex, vehicular communication scenarios executed over cost-effective, commercial-off-the-shelf (COTS) simulation architectures. Dynamic model partition and adaptation-based load balancing solutions have been designed by exploiting common assumptions and model characteristics, in a user-transparent way. Test-bed performance evaluation for realistic scenarios has shown the effectiveness of MoVES in terms of simulation efficiency, scalability, adaptation and simulation accuracy. | |
Data prodotto definitivo in UGOV: | 2008-01-10 14:45:12 | |
Data stato definitivo: | 2016-11-30T10:53:53Z | |
Appare nelle tipologie: | 1.01 Articolo in rivista |