Starch is one of the major sinks of fixed carbon in photosynthetic tissues of higher plants. Carbon fixation and the synthesis of primary starch occur during the day in the chloroplast stroma, whereas starch degradation typically occurs during the following night to fuel the whole plant with energy and carbon in the absence of photosynthesis. Redoxbased regulatory systems play a central role in the modulation of several chloroplastic pathways. Reversible oxidations of cysteine residues are post-translational modifications that orchestrate the precise functioning of chloroplast pathways together with changes in pH, Mg2+ and concentrations of metabolic intermediates. Leaf starch metabolism has been intensively studied. The enzymes involved in starch synthesis and degradation have been identified and characterized. However, the redox control of the enzymes responsible for starch degradation at night remains elusive, and their response to redox transitions conflicts with the timing of the physiological events. Most of the enzymes of starch degradation are activated by reducing conditions, characteristic of daytime. Thus, redox control may have only a minor role during starch degradation at night, but could become relevant for daily stomatal opening in guard cells or in the re-allocation of fixed carbon in mesophyll cells in response to stress conditions.

Santelia, D., Trost, P., Sparla, F. (2015). New insights into redox control of starch degradation. CURRENT OPINION IN PLANT BIOLOGY, 25, 1-9 [10.1016/j.pbi.2015.04.003].

New insights into redox control of starch degradation

TROST, PAOLO BERNARDO;SPARLA, FRANCESCA
2015

Abstract

Starch is one of the major sinks of fixed carbon in photosynthetic tissues of higher plants. Carbon fixation and the synthesis of primary starch occur during the day in the chloroplast stroma, whereas starch degradation typically occurs during the following night to fuel the whole plant with energy and carbon in the absence of photosynthesis. Redoxbased regulatory systems play a central role in the modulation of several chloroplastic pathways. Reversible oxidations of cysteine residues are post-translational modifications that orchestrate the precise functioning of chloroplast pathways together with changes in pH, Mg2+ and concentrations of metabolic intermediates. Leaf starch metabolism has been intensively studied. The enzymes involved in starch synthesis and degradation have been identified and characterized. However, the redox control of the enzymes responsible for starch degradation at night remains elusive, and their response to redox transitions conflicts with the timing of the physiological events. Most of the enzymes of starch degradation are activated by reducing conditions, characteristic of daytime. Thus, redox control may have only a minor role during starch degradation at night, but could become relevant for daily stomatal opening in guard cells or in the re-allocation of fixed carbon in mesophyll cells in response to stress conditions.
2015
Santelia, D., Trost, P., Sparla, F. (2015). New insights into redox control of starch degradation. CURRENT OPINION IN PLANT BIOLOGY, 25, 1-9 [10.1016/j.pbi.2015.04.003].
Santelia, Diana; Trost, Paolo; Sparla, Francesca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/522254
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 48
social impact