We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene’s partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of polytime sampleable distributions, a key concept in average-case complexity and cryptography.

Dal Lago, U., Zuppiroli, S. (2014). Probabilistic Recursion Theory and Implicit Computational Complexity [10.1007/978-3-319-10882-7_7].

Probabilistic Recursion Theory and Implicit Computational Complexity

DAL LAGO, UGO;ZUPPIROLI, SARA
2014

Abstract

We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene’s partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of polytime sampleable distributions, a key concept in average-case complexity and cryptography.
2014
Proceedings of the 11th International Colloquium on Theoretical Aspects of Computing, Bucharest, Romania, September 17-19, 2014.
97
114
Dal Lago, U., Zuppiroli, S. (2014). Probabilistic Recursion Theory and Implicit Computational Complexity [10.1007/978-3-319-10882-7_7].
Dal Lago, Ugo; Zuppiroli, Sara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/520886
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact