We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene's partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of a polytime sampleable distribution, a key concept in average-case complexity and cryptography.

Dal Lago, U., Zuppiroli, S., Gabbrielli, M. (2014). Probabilistic recursion theory and implicit computational complexity. SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 24(2), 177-216 [10.7561/SACS.2014.2.177].

Probabilistic recursion theory and implicit computational complexity

DAL LAGO, UGO;ZUPPIROLI, SARA;GABBRIELLI, MAURIZIO
2014

Abstract

We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene's partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of a polytime sampleable distribution, a key concept in average-case complexity and cryptography.
2014
Dal Lago, U., Zuppiroli, S., Gabbrielli, M. (2014). Probabilistic recursion theory and implicit computational complexity. SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 24(2), 177-216 [10.7561/SACS.2014.2.177].
Dal Lago, Ugo; Zuppiroli, Sara; Gabbrielli, Maurizio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/520877
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 1
social impact