Self-organisation mechanisms, in which simple local interactions result in robust collective behaviors, are a useful approach to managing the coordination of large-scale adaptive systems. Emerging pervasive application scenarios, however, pose an openness challenge for this approach, as they often require flexible and dynamic deployment of new code to the pertinent devices in the network, and safe and predictable integration of that new code into the existing system of distributed self-organisation mechanisms. We approach this problem of combining self-organisation and code mobility by extending “computational field calculus”, a universal calculus for specification of self-organising systems, with a semantics for distributed first-class functions. Practically, this allows self-organisation code to be naturally handled like any other data, e.g., dynamically constructed, compared, spread across devices, and executed in safely encapsulated distributed scopes. Programmers may thus be provided with the novel first-class abstraction of a “distributed function field”, a dynamically evolving map from a network of devices to a set of executing distributed processes.
Damiani, F., Viroli, M., Pianini, D., Beal, J. (2015). Code mobility meets self-organisation: A higher-order calculus of computational fields. Berlin Heidelberg : Springer Berlin Heidelberg [10.1007/978-3-319-19195-9_8].
Code mobility meets self-organisation: A higher-order calculus of computational fields
VIROLI, MIRKO;PIANINI, DANILO;
2015
Abstract
Self-organisation mechanisms, in which simple local interactions result in robust collective behaviors, are a useful approach to managing the coordination of large-scale adaptive systems. Emerging pervasive application scenarios, however, pose an openness challenge for this approach, as they often require flexible and dynamic deployment of new code to the pertinent devices in the network, and safe and predictable integration of that new code into the existing system of distributed self-organisation mechanisms. We approach this problem of combining self-organisation and code mobility by extending “computational field calculus”, a universal calculus for specification of self-organising systems, with a semantics for distributed first-class functions. Practically, this allows self-organisation code to be naturally handled like any other data, e.g., dynamically constructed, compared, spread across devices, and executed in safely encapsulated distributed scopes. Programmers may thus be provided with the novel first-class abstraction of a “distributed function field”, a dynamically evolving map from a network of devices to a set of executing distributed processes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.