This paper focuses on possibilities to maximize waste conversion through integration of a Waste-To-Energy (WTE) plant with a gas turbine (GT). In particular, this study investigates the feasibility of utilizing the hot gases leaving the GT mainly to superheat the steam leaving the WTE steam generator. A parametric investigation on the steam production is carried out and the optimum plant match condition in terms of plants capacity ratio is identified and discussed. Detailed modifications to a typical WTE cycle arrangement are presented, in order to evaluate the resulting performance enhancement. Numerical results of a conventional reference WTE plant repowering with different GT commercial units are shown and discussed. Performance indexes, specifically introduced in order to assess the proposed integrated configuration and to allocate power output to each input fuel are illustrated and applied on the considered plant. Results of the study suggest possibilities to create new advanced WTE-GT integrated power plants or to repower existing WTE plants, in order to increase waste to energy conversion

Advanced waste-to-energy steam cycles

BIANCHI, MICHELE;BRANCHINI, LISA;DE PASCALE, ANDREA;
2014

Abstract

This paper focuses on possibilities to maximize waste conversion through integration of a Waste-To-Energy (WTE) plant with a gas turbine (GT). In particular, this study investigates the feasibility of utilizing the hot gases leaving the GT mainly to superheat the steam leaving the WTE steam generator. A parametric investigation on the steam production is carried out and the optimum plant match condition in terms of plants capacity ratio is identified and discussed. Detailed modifications to a typical WTE cycle arrangement are presented, in order to evaluate the resulting performance enhancement. Numerical results of a conventional reference WTE plant repowering with different GT commercial units are shown and discussed. Performance indexes, specifically introduced in order to assess the proposed integrated configuration and to allocate power output to each input fuel are illustrated and applied on the considered plant. Results of the study suggest possibilities to create new advanced WTE-GT integrated power plants or to repower existing WTE plants, in order to increase waste to energy conversion
Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea; Falchetti, Massimo; Fiore, Paolo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/518984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact