We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs), activation of resident cardiac stem cells via growth factors (GFs) [hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1):GFs] or both, are improved by pharmacologically active microcarriers (PAMs) interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs) were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

FIUMANA, EMANUELA;BONAFÈ, FRANCESCA;MORSELLI, PAOLO;CALDARERA, CLAUDIO MARCELLO;GUARNIERI, CARLO;MUSCARI, CLAUDIO;
2014

Abstract

We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs), activation of resident cardiac stem cells via growth factors (GFs) [hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1):GFs] or both, are improved by pharmacologically active microcarriers (PAMs) interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs) were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.
Proceedings of the 85th SIBS Congress
46
47
Savi, Monia; Bocchi, Leonardo; Fiumana, Emanuela; Frati, Caterina; Bonafé, Francesca; Cavalli, Stefano; Morselli, Paolo Giovanni; Karam, Jean-Pierre; Montero-Menei, Claudia; Caldarera, Claudio Marcello; Guarnieri, Carlo; Muscari, Claudio; Stilli, Donatella; Quaini, Federico; Musso, Ezio
File in questo prodotto:
File Dimensione Formato  
Cardiac regeneration by pharmacologically active microcarriers.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 613.69 kB
Formato Adobe PDF
613.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/518969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact