The rotational spectra of two isotopologues of the 1:1 complex between chlorotrifluoromethane and formaldehyde have been recorded and analyzed by using Fourier-transform microwave spectroscopy. Only one rotamer was detected, with the two constituent molecules held together through a Cl⋅⋅⋅O halogen bond (R(Cl⋅⋅⋅O) = 3.048 Å). The dimer displays two simultaneous large-amplitude intramolecular motions. The internal rotation of formaldehyde around its symmetry axis (V2 = 28(5) cm(-1)) splits all the rotational transitions into two component lines with a relative intensity ratio of 1:3. On the other hand, the almost free internal rotation (V3 ≈ 2.5 cm(-1)) of the CF3 symmetric top increases the "rigid" value of the rotational constant A by almost one order of magnitude. In addition, all the transitions display a hyperfine structure due to the (35)Cl (or (37)Cl) nucleus quadrupole effects.
Gou, Q., Feng, G., Evangelisti, L., Vallejo-Lopez, M., Spada, L., Lesarri, A., et al. (2015). Internal dynamics in halogen-bonded adducts: A rotational study of chlorotrifluoromethane-formaldehyde. CHEMISTRY-A EUROPEAN JOURNAL, 21(10), 4148-4152 [10.1002/chem.201406122].
Internal dynamics in halogen-bonded adducts: A rotational study of chlorotrifluoromethane-formaldehyde
GOU, QIAN;FENG, GANG;EVANGELISTI, LUCA;SPADA, LORENZO;CAMINATI, WALTHER
2015
Abstract
The rotational spectra of two isotopologues of the 1:1 complex between chlorotrifluoromethane and formaldehyde have been recorded and analyzed by using Fourier-transform microwave spectroscopy. Only one rotamer was detected, with the two constituent molecules held together through a Cl⋅⋅⋅O halogen bond (R(Cl⋅⋅⋅O) = 3.048 Å). The dimer displays two simultaneous large-amplitude intramolecular motions. The internal rotation of formaldehyde around its symmetry axis (V2 = 28(5) cm(-1)) splits all the rotational transitions into two component lines with a relative intensity ratio of 1:3. On the other hand, the almost free internal rotation (V3 ≈ 2.5 cm(-1)) of the CF3 symmetric top increases the "rigid" value of the rotational constant A by almost one order of magnitude. In addition, all the transitions display a hyperfine structure due to the (35)Cl (or (37)Cl) nucleus quadrupole effects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.