The ATP synthase can be imagined as a reversible H(+)-translocating channel embedded in the membrane, FO portion, coupled to a protruding catalytic portion, F1. Under physiological conditions the F1FO complex synthesizes ATP by exploiting the transmembrane electrochemical gradient of protons and their downhill movement. Alternatively, under other patho-physiological conditions it exploits ATP hydrolysis to energize the membrane by uphill pumping protons. The reversibility of the mechanism is guaranteed by the structural coupling between the hydrophilic F1 and the hydrophobic FO. Which of the two opposite processes wins in the energy-transducing membrane complex depends on the thermodynamic balance between the protonmotive force (Δp) and the phosphorylation potential of ATP (ΔG P). Accordingly, while Δp prevalence drives ATP synthesis by translocating protons from the membrane P-side to the N-side and generating anticlockwise torque rotation (viewed from the matrix), ΔG P drives ATP hydrolysis by chemomechanical coupling of FO to F1 with clockwise torque. The direction of rotation is the same in all the ATP synthases, due to the conserved steric arrangement of the chiral a subunit of FO. The ability of this coupled bi-functional complex to produce opposite rotations in ATP synthesis and hydrolysis is explained on the basis of the a subunit asymmetry.
Nesci, S., Trombetti, F., Ventrella, V., Pagliarani, A. (2015). Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry. THE JOURNAL OF MEMBRANE BIOLOGY, 248(2), 163-169 [10.1007/s00232-014-9760-y].
Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry
NESCI, SALVATORE;TROMBETTI, FABIANA;VENTRELLA, VITTORIA;PAGLIARANI, ALESSANDRA
2015
Abstract
The ATP synthase can be imagined as a reversible H(+)-translocating channel embedded in the membrane, FO portion, coupled to a protruding catalytic portion, F1. Under physiological conditions the F1FO complex synthesizes ATP by exploiting the transmembrane electrochemical gradient of protons and their downhill movement. Alternatively, under other patho-physiological conditions it exploits ATP hydrolysis to energize the membrane by uphill pumping protons. The reversibility of the mechanism is guaranteed by the structural coupling between the hydrophilic F1 and the hydrophobic FO. Which of the two opposite processes wins in the energy-transducing membrane complex depends on the thermodynamic balance between the protonmotive force (Δp) and the phosphorylation potential of ATP (ΔG P). Accordingly, while Δp prevalence drives ATP synthesis by translocating protons from the membrane P-side to the N-side and generating anticlockwise torque rotation (viewed from the matrix), ΔG P drives ATP hydrolysis by chemomechanical coupling of FO to F1 with clockwise torque. The direction of rotation is the same in all the ATP synthases, due to the conserved steric arrangement of the chiral a subunit of FO. The ability of this coupled bi-functional complex to produce opposite rotations in ATP synthesis and hydrolysis is explained on the basis of the a subunit asymmetry.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.