For a complex semisimple Lie algebra g with Hermitian real form gR=kR+pR, there exists a positive system of roots such that the adjoint k-representation on pp stabilizes the positive and negative root spaces. In this article, we extend this result to contragredient Lie superalgebras g, and study the number of irreducible components of the k-representation. We also discuss the complex structure on gR/kR.

Hermitian real forms of contragredient Lie superalgebras.

FIORESI, RITA;
2015

Abstract

For a complex semisimple Lie algebra g with Hermitian real form gR=kR+pR, there exists a positive system of roots such that the adjoint k-representation on pp stabilizes the positive and negative root spaces. In this article, we extend this result to contragredient Lie superalgebras g, and study the number of irreducible components of the k-representation. We also discuss the complex structure on gR/kR.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/515287
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact