We prove that the projectors arising from the decomposition theorem applied to a projective map of quasi-projective varieties are absolute Hodge, Andr ́e motivated, Tate and Ogus classes. As a by-product, we introduce, in characteristic zero, the notions of algebraic de Rham intersection cohomology groups of a quasi-projective variety and of intersection cohomology motive of a projective variety

Cataldo, M.A.A.d., Migliorini, L. (2015). The projectors of the decomposition theorem are motivated. MATHEMATICAL RESEARCH LETTERS, 22(4), 1061-1088 [10.4310/MRL.2015.v22.n4.a6].

The projectors of the decomposition theorem are motivated

MIGLIORINI, LUCA
2015

Abstract

We prove that the projectors arising from the decomposition theorem applied to a projective map of quasi-projective varieties are absolute Hodge, Andr ́e motivated, Tate and Ogus classes. As a by-product, we introduce, in characteristic zero, the notions of algebraic de Rham intersection cohomology groups of a quasi-projective variety and of intersection cohomology motive of a projective variety
2015
Cataldo, M.A.A.d., Migliorini, L. (2015). The projectors of the decomposition theorem are motivated. MATHEMATICAL RESEARCH LETTERS, 22(4), 1061-1088 [10.4310/MRL.2015.v22.n4.a6].
Cataldo, Mark Andrea A. de; Migliorini, Luca
File in questo prodotto:
File Dimensione Formato  
1401.3705.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/515063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact