The balanced description of ionic and covalent molecular excited electronic states still presents a challenge for current electronic structure methods. In this contribution, we show how the restricted active space self-consistent field (RASSCF) method can be used to address this problem, applied to two dienes in the cis conformation. As with the closely related complete active space self-consistent field (CASSCF) method, the construction of the orbital active space in the RASSCF methodology requires the a priori formulation of a physical or theoretical model of the system being studied. In this article, we discuss how the active space can be constructed in a guided and systematic way, using pairs of natural bond orbitals as correlating partner orbitals (oscillator orbitals) and semi-internal correlation. The resulting balanced description of the covalent and ionic valence excited states - with the ionic state correctly lower in energy at the Franck-Condon geometry - is suitable to study the photochemistry of these and other molecules.

Photochemical reaction paths of cis-dienes studied with RASSCF: The changing balance between ionic and covalent excited states / Santolini, V.; Malhado, J.P.; Robb, M.A.; Garavelli, M.; Bearpark, M.J.. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - STAMPA. - 113:13-14(2015), pp. 1978-1990. [10.1080/00268976.2015.1025880]

Photochemical reaction paths of cis-dienes studied with RASSCF: The changing balance between ionic and covalent excited states

GARAVELLI, MARCO;
2015

Abstract

The balanced description of ionic and covalent molecular excited electronic states still presents a challenge for current electronic structure methods. In this contribution, we show how the restricted active space self-consistent field (RASSCF) method can be used to address this problem, applied to two dienes in the cis conformation. As with the closely related complete active space self-consistent field (CASSCF) method, the construction of the orbital active space in the RASSCF methodology requires the a priori formulation of a physical or theoretical model of the system being studied. In this article, we discuss how the active space can be constructed in a guided and systematic way, using pairs of natural bond orbitals as correlating partner orbitals (oscillator orbitals) and semi-internal correlation. The resulting balanced description of the covalent and ionic valence excited states - with the ionic state correctly lower in energy at the Franck-Condon geometry - is suitable to study the photochemistry of these and other molecules.
2015
Photochemical reaction paths of cis-dienes studied with RASSCF: The changing balance between ionic and covalent excited states / Santolini, V.; Malhado, J.P.; Robb, M.A.; Garavelli, M.; Bearpark, M.J.. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - STAMPA. - 113:13-14(2015), pp. 1978-1990. [10.1080/00268976.2015.1025880]
Santolini, V.; Malhado, J.P.; Robb, M.A.; Garavelli, M.; Bearpark, M.J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/514531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact