Secondary tumors and leukemias are major complications in Hodgkin lymphoma (HL). They likely arise from clonal selection of cells that have accumulated genomic lesions induced by chemo- and radiotherapy and may be further promoted by the loss of DNA repair and/or other pathways ensuring the fidelity of replicated DNA. To distinguish genomic imbalances associated with the development of acute myeloid leukemia (AML) in HL we used an array-based comparative genomic hybridization (aCGH) strategy on whole lymph node biopsies of HL patient. Genomic imbalances (amplifications and deletions) associated with AML outcome in 3 classic HL patients, at clinical diagnosis they exhibited a discrete individual variability. Three amplifications and 5 deletions were shared by all 3 patients. They involved AFM137XA11, a 9p11.2 pericentric region; FGFR1, the FGF receptor most frequently translocated in AML; PPARBP, a co-activator of nuclear receptors RARalpha, RXR and TRbeta1; AFM217YD10, a 17q25 telomeric region; FGR, an SRC2 kinase involved in cytokine production by NK and CD4+ NKT cells; GATA3, a Th2-specific transcription factor; TOP1, involved in DNA recombination and repair; WT1, a transcription factor involved in CD8+ T cell response against leukaemic blasts. Immunohistochemistry confirmed aCGH results and distinguished the distribution of either amplified or deleted gene products in neoplastic Reed Sternberg (RS) cells and non-neoplastic lymph node components.

Genomic imbalances associated with secondary acute leukemias in Hodgkin lymphoma.

BRUSA, GIANLUCA;ZUFFA, ELISA;REMONDINI, DANIEL;CASTELLANI, GASTONE;PILERI, STEFANO;ZINZANI, PIER LUIGI;MANCINI, MANUELA;BARBIERI, ENZA;
2007

Abstract

Secondary tumors and leukemias are major complications in Hodgkin lymphoma (HL). They likely arise from clonal selection of cells that have accumulated genomic lesions induced by chemo- and radiotherapy and may be further promoted by the loss of DNA repair and/or other pathways ensuring the fidelity of replicated DNA. To distinguish genomic imbalances associated with the development of acute myeloid leukemia (AML) in HL we used an array-based comparative genomic hybridization (aCGH) strategy on whole lymph node biopsies of HL patient. Genomic imbalances (amplifications and deletions) associated with AML outcome in 3 classic HL patients, at clinical diagnosis they exhibited a discrete individual variability. Three amplifications and 5 deletions were shared by all 3 patients. They involved AFM137XA11, a 9p11.2 pericentric region; FGFR1, the FGF receptor most frequently translocated in AML; PPARBP, a co-activator of nuclear receptors RARalpha, RXR and TRbeta1; AFM217YD10, a 17q25 telomeric region; FGR, an SRC2 kinase involved in cytokine production by NK and CD4+ NKT cells; GATA3, a Th2-specific transcription factor; TOP1, involved in DNA recombination and repair; WT1, a transcription factor involved in CD8+ T cell response against leukaemic blasts. Immunohistochemistry confirmed aCGH results and distinguished the distribution of either amplified or deleted gene products in neoplastic Reed Sternberg (RS) cells and non-neoplastic lymph node components.
Brusa G; Zuffa E; Hattinger CM; Serra M; Remondini D; Castellani G; Righi S; Campidelli C; Pileri S; Zinzani PL; Gabriele A; Mancini M; Corrado P; Barbieri E; Santucci MA.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/51396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact