In this work, we approach the impact of dynamic and static disorder on DNA charge transfer from a theoretical and numerical perspective. Disordered or defect geometries are either realized via molecular dynamics simulations using a classical force field or by experimentally determined DNA bulge structures. We apply a chemically specific, atomically resolved extended Su-Schrieffer-Heeger model to compute the energy parameters relevant to DNA charge transfer. For both models studied here, the effective donor-acceptor couplings-and hence the charge transfer rates-significantly depend upon the geometry. Dynamic disorder leads to a correlation time in this quantity of the order of 30 fs, and the transfer rates universally exhibit a broad, yet well-defined, exponential distribution. For DNA bulges, the angle characterizing the defect controls the charge transfer efficiency. The results are discussed and extensively compared to experimental findings and other calculations.

Tobias Cramer, Thomas Steinbrecher, Andreas Labahn, Thorsten Koslowski (2005). Static and dynamic aspects of DNA charge transfer: a theoretical perspective. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 7, 4039-4050 [10.1039/b507454a].

Static and dynamic aspects of DNA charge transfer: a theoretical perspective

CRAMER, TOBIAS;
2005

Abstract

In this work, we approach the impact of dynamic and static disorder on DNA charge transfer from a theoretical and numerical perspective. Disordered or defect geometries are either realized via molecular dynamics simulations using a classical force field or by experimentally determined DNA bulge structures. We apply a chemically specific, atomically resolved extended Su-Schrieffer-Heeger model to compute the energy parameters relevant to DNA charge transfer. For both models studied here, the effective donor-acceptor couplings-and hence the charge transfer rates-significantly depend upon the geometry. Dynamic disorder leads to a correlation time in this quantity of the order of 30 fs, and the transfer rates universally exhibit a broad, yet well-defined, exponential distribution. For DNA bulges, the angle characterizing the defect controls the charge transfer efficiency. The results are discussed and extensively compared to experimental findings and other calculations.
2005
Tobias Cramer, Thomas Steinbrecher, Andreas Labahn, Thorsten Koslowski (2005). Static and dynamic aspects of DNA charge transfer: a theoretical perspective. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 7, 4039-4050 [10.1039/b507454a].
Tobias Cramer;Thomas Steinbrecher;Andreas Labahn;Thorsten Koslowski
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/511968
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact