MCSHAPE is a Monte Carlo code for the simulation of gamma and X-ray diffusion in matter which gives a general description of the evolution of the polarisation state of the photons. The model is derived from the so-called ‘vector’ transport equation. The three-dimensional (3D) version of the code can accurately simulate the propagation of photons in heterogeneous media originating from either polarised (i.e. synchrotron) or unpolarised sources, such as X-ray tubes. Photoelectric effect, Rayleigh and Compton scattering, the three most important interaction types for photons in the considered energy range (1–1000 keV), are included in the simulation with the state-of-art extent of detail. In this paper, the 3D version of the code MCSHAPE is presented. The sample is described using the so-called voxel model. Results from the validation studies and applications of the code to scanning XRF and XRF tomography experiments are discussed.
Viviana Scot, Jorge Eduardo Fernandez, L. Vincze, K. Janssens (2007). 3D extension of the Monte Carlo code MCSHAPE for photon-matter interactions in heterogeneous media. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION B, BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 263, 204-208 [10.1016/j.nimb.2007.04.205].
3D extension of the Monte Carlo code MCSHAPE for photon-matter interactions in heterogeneous media
SCOT, VIVIANA;FERNANDEZ, JORGE EDUARDO;
2007
Abstract
MCSHAPE is a Monte Carlo code for the simulation of gamma and X-ray diffusion in matter which gives a general description of the evolution of the polarisation state of the photons. The model is derived from the so-called ‘vector’ transport equation. The three-dimensional (3D) version of the code can accurately simulate the propagation of photons in heterogeneous media originating from either polarised (i.e. synchrotron) or unpolarised sources, such as X-ray tubes. Photoelectric effect, Rayleigh and Compton scattering, the three most important interaction types for photons in the considered energy range (1–1000 keV), are included in the simulation with the state-of-art extent of detail. In this paper, the 3D version of the code MCSHAPE is presented. The sample is described using the so-called voxel model. Results from the validation studies and applications of the code to scanning XRF and XRF tomography experiments are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.