The fully developed mixed convection flow in a vertical circular duct is investigated analytically, under the assumption of laminar parallel flow. A wall heat flux uniform in the axial direction and dependent on the angular coordinate is considered. As a consequence, the fluid temperature is three dimensional, since it changes in the radial, axial and angular directions. An analytical method based on Fourier series expansions of temperature and velocity fields is adopted to determine the velocity and the temperature distributions as well as the friction factor and the average Nusselt number. The general solution, expressed in terms of Bessel functions, is applied to study a case that has a special importance in technical applications: a duct whose wall is half subject to a uniform heat flux and half adiabatic. The positive and negative threshold values of the ratio between the Grashof number Gr and the Reynolds number Re for the onset of the flow reversal phenomenon are determined. A comparison between the average Nusselt number for the considered non-axisymmetric case and that for the case of a duct subject to a uniform wall heat flux is performed.

Combined forced and free flow in a vertical circular duct subjected to non-axisymmetric wall heating conditions

BARLETTA, ANTONIO;LAZZARI, STEFANO
2007

Abstract

The fully developed mixed convection flow in a vertical circular duct is investigated analytically, under the assumption of laminar parallel flow. A wall heat flux uniform in the axial direction and dependent on the angular coordinate is considered. As a consequence, the fluid temperature is three dimensional, since it changes in the radial, axial and angular directions. An analytical method based on Fourier series expansions of temperature and velocity fields is adopted to determine the velocity and the temperature distributions as well as the friction factor and the average Nusselt number. The general solution, expressed in terms of Bessel functions, is applied to study a case that has a special importance in technical applications: a duct whose wall is half subject to a uniform heat flux and half adiabatic. The positive and negative threshold values of the ratio between the Grashof number Gr and the Reynolds number Re for the onset of the flow reversal phenomenon are determined. A comparison between the average Nusselt number for the considered non-axisymmetric case and that for the case of a duct subject to a uniform wall heat flux is performed.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/51039
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact