We consider hydrodynamic systems which possess a local Hamiltonian structure. To such a system there are also associated an infinite number of nonlocal Hamiltonian structures. We give necessary and sufficient conditions so that, after a nonlinear transformation of the independent variables, the reciprocal system still possesses a local Hamiltonian structure. We show that, under our hypotheses, bi--hamiltonicity is preserved by the reciprocal transformation. Finally we apply such results to reciprocal systems of genus g Whitham-KdV modulation equations.

S. Abenda, T. Grava (2007). Reciprocal transformations and flat metrics on Hurwitz spaces. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 40, 10769-10790 [10.1088/1751-8113/40/35/004].

Reciprocal transformations and flat metrics on Hurwitz spaces

ABENDA, SIMONETTA;
2007

Abstract

We consider hydrodynamic systems which possess a local Hamiltonian structure. To such a system there are also associated an infinite number of nonlocal Hamiltonian structures. We give necessary and sufficient conditions so that, after a nonlinear transformation of the independent variables, the reciprocal system still possesses a local Hamiltonian structure. We show that, under our hypotheses, bi--hamiltonicity is preserved by the reciprocal transformation. Finally we apply such results to reciprocal systems of genus g Whitham-KdV modulation equations.
2007
S. Abenda, T. Grava (2007). Reciprocal transformations and flat metrics on Hurwitz spaces. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 40, 10769-10790 [10.1088/1751-8113/40/35/004].
S. Abenda; T. Grava
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/50764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact