We study diffusion on a periodic billiard table with an infinite horizon in the limit of narrow corridors. An effective trapping mechanism emerges according to which the process can be modeled by a Levy walk combining exponentially distributed trapping times with free propagation along paths whose precise probabilities we compute. This description yields an approximation of the mean squared displacement of infinite-horizon billiards in terms of two transport coefficients, which generalizes to this anomalous regime the Machta-Zwanzig approximation of normal diffusion in finite-horizon billiards.

Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders (2014). Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 90(5), 050102-1-050102-5 [10.1103/PhysRevE.90.050102].

Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards

CRISTADORO, GIAMPAOLO;LENCI, MARCO;
2014

Abstract

We study diffusion on a periodic billiard table with an infinite horizon in the limit of narrow corridors. An effective trapping mechanism emerges according to which the process can be modeled by a Levy walk combining exponentially distributed trapping times with free propagation along paths whose precise probabilities we compute. This description yields an approximation of the mean squared displacement of infinite-horizon billiards in terms of two transport coefficients, which generalizes to this anomalous regime the Machta-Zwanzig approximation of normal diffusion in finite-horizon billiards.
2014
Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders (2014). Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 90(5), 050102-1-050102-5 [10.1103/PhysRevE.90.050102].
Giampaolo Cristadoro;Thomas Gilbert;Marco Lenci;David P. Sanders
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/506581
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact