capability of producing NO seems to depend on its interaction with sulfhydryl-containing molecules present in vivo. The aim of this research has been the study of the mechanism of interaction between SNP and sulfhydryl-containing compounds, such as cysteine and glutathione, through detection by EPR, UV-vis, and IR spectroscopy of both the radical and nonradical species involved. An electron-transfer process can be invoked as the key step, which leads to the formation of the reduced SNP radical, the main detectable radical intermediate, and the corresponding S-nitrosothiol, the ending product of NO that can be considered the real storage and transporters of NO. When cysteine was used, a second radical species (A) is detectable: it can be accounted for by the interaction of a byproduct with unreacted cysteine.
L. Grossi, S. D’Angelo (2005). Sodium Nitroprusside: Mechanism of NO Release Mediated by Sulfhydryl-Containing Molecules. JOURNAL OF MEDICINAL CHEMISTRY, 48, 2622-2626 [10.1021/jm049857n].
Sodium Nitroprusside: Mechanism of NO Release Mediated by Sulfhydryl-Containing Molecules.
GROSSI, LORIS;
2005
Abstract
capability of producing NO seems to depend on its interaction with sulfhydryl-containing molecules present in vivo. The aim of this research has been the study of the mechanism of interaction between SNP and sulfhydryl-containing compounds, such as cysteine and glutathione, through detection by EPR, UV-vis, and IR spectroscopy of both the radical and nonradical species involved. An electron-transfer process can be invoked as the key step, which leads to the formation of the reduced SNP radical, the main detectable radical intermediate, and the corresponding S-nitrosothiol, the ending product of NO that can be considered the real storage and transporters of NO. When cysteine was used, a second radical species (A) is detectable: it can be accounted for by the interaction of a byproduct with unreacted cysteine.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.