Circuits based on chaotic maps are increasingly appealing to synthesize signals with prescribed statistical features. However, in their implementation one should not forget that electronic noise can affect the statistics, even by a large amount. Although dealing with the effects of noise on a strongly nonlinear system can be hard, it has recently been proved that classes of chaotic maps exist whose invariant density is completely insensitive to it, a property that makes them particularly well suited for implementation. This paper builds upon that initial framework, offering a wider set of sufficient conditions for general noise robustness. It also illustrates that other noise robustness mechanisms exist when the particular (yet reasonable) assumption of symmetrically distributed noise is made.

Some More Robustness Conditions for the Invariant Density of a Class of 1D Maps under Additive Noise

CALLEGARI, SERGIO
2007

Abstract

Circuits based on chaotic maps are increasingly appealing to synthesize signals with prescribed statistical features. However, in their implementation one should not forget that electronic noise can affect the statistics, even by a large amount. Although dealing with the effects of noise on a strongly nonlinear system can be hard, it has recently been proved that classes of chaotic maps exist whose invariant density is completely insensitive to it, a property that makes them particularly well suited for implementation. This paper builds upon that initial framework, offering a wider set of sufficient conditions for general noise robustness. It also illustrates that other noise robustness mechanisms exist when the particular (yet reasonable) assumption of symmetrically distributed noise is made.
Proceedings of the 2007 European Conference on Circuit Theory and Design
1038
1041
Callegari S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/49731
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact