A covering of a group is a finite set of proper subgroups whose union is the whole group. A covering is minimal if there is no covering of smaller cardinality, and it is nilpotent if all its members are nilpotent subgroups. We complete a proof that every group that has a nilpotent minimal covering is solvable, starting from the previously known result that a minimal counterexample is an almost simple finite group.

R. D., B., F., F., Morigi, M. (2015). The solvability of groups with nilpotent minimal coverings. JOURNAL OF ALGEBRA, 427, 375-386 [10.1016/j.jalgebra.2014.12.033].

The solvability of groups with nilpotent minimal coverings

MORIGI, MARTA
2015

Abstract

A covering of a group is a finite set of proper subgroups whose union is the whole group. A covering is minimal if there is no covering of smaller cardinality, and it is nilpotent if all its members are nilpotent subgroups. We complete a proof that every group that has a nilpotent minimal covering is solvable, starting from the previously known result that a minimal counterexample is an almost simple finite group.
2015
R. D., B., F., F., Morigi, M. (2015). The solvability of groups with nilpotent minimal coverings. JOURNAL OF ALGEBRA, 427, 375-386 [10.1016/j.jalgebra.2014.12.033].
R. D., Blyth; F., Fumagalli; Morigi, Marta
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/495167
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact