The aim of this study was to examine the role of the nanofillers spatial arrangement in the electrical properties of hybrid organic-inorganic fibers. In this paper, we have presented experimental results for preparation of fibers with a nanometric diameter based on a polyaniline/poly(ethylene oxide) doped blend and geomimetic chrysotile nanotubes. The nanostructured material was prepared using electrospinning techniques. Electrospun fibers made by pristine polymers and by the same blend loaded with carbon nanotubes were used as reference materials to compare the structural, and electrical properties of the novel organic-inorganic material. Generally, electrical properties were improved by the addition of materials that have high conductivity. Electrospun fibers filled with a traditional insulator like chrysotile have shown higher electrical conductivity than the pristine materials. In order to fully understand how structural variations impact upon the electrical conductivity the materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), differential scanning calorimetry (DSC) and four-point probe method. The results suggest that the occurred electrical conductivity gain could be attributed to parallel orientation of the chrysotile nanotubes and higher crystallinity induced by the one-dimensional nanostructured filler materials. The obtained results bring us one step closer to using intrinsically conducting polymers (ICPs) in the creation of functionalized polymeric nanocomposites for nanotechnology.
Filippo Pierini, Massimiliano Lanzi, Isidoro Giorgio Lesci, Norberto Roveri (2015). Comparison between inorganic geomimetic chrysotile and multiwalled carbon nanotubes in the preparation of one-dimensional conducting polymer nanocomposites. FIBERS AND POLYMERS, 16, 426-433 [10.1007/s12221-015-0426-x].
Comparison between inorganic geomimetic chrysotile and multiwalled carbon nanotubes in the preparation of one-dimensional conducting polymer nanocomposites
PIERINI, FILIPPO;LANZI, MASSIMILIANO;LESCI, ISIDORO GIORGIO;ROVERI, NORBERTO
2015
Abstract
The aim of this study was to examine the role of the nanofillers spatial arrangement in the electrical properties of hybrid organic-inorganic fibers. In this paper, we have presented experimental results for preparation of fibers with a nanometric diameter based on a polyaniline/poly(ethylene oxide) doped blend and geomimetic chrysotile nanotubes. The nanostructured material was prepared using electrospinning techniques. Electrospun fibers made by pristine polymers and by the same blend loaded with carbon nanotubes were used as reference materials to compare the structural, and electrical properties of the novel organic-inorganic material. Generally, electrical properties were improved by the addition of materials that have high conductivity. Electrospun fibers filled with a traditional insulator like chrysotile have shown higher electrical conductivity than the pristine materials. In order to fully understand how structural variations impact upon the electrical conductivity the materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), differential scanning calorimetry (DSC) and four-point probe method. The results suggest that the occurred electrical conductivity gain could be attributed to parallel orientation of the chrysotile nanotubes and higher crystallinity induced by the one-dimensional nanostructured filler materials. The obtained results bring us one step closer to using intrinsically conducting polymers (ICPs) in the creation of functionalized polymeric nanocomposites for nanotechnology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.