Employing 3D finite element method, we develop an algorithm to calculate gravity changes due to pressurized sources of any shape in elastic and inelastic heterogeneous media. We consider different source models, such as sphere, spheroid and sill, dilating in elastic media (homogeneous and heterogeneous) and in elasto-plastic media. The models are oriented to reproduce the gravity changes and the surface deformation observed at Campi Flegrei caldera (Italy), during the 1982-84 unrest episode. The source shape and the characteristics of the medium have great influence in the calculated gravity changes, leading to very different values for the source densities. Indeed, the gravity residual strongly depends upon the shape of the source. Non negligible contributions also come from density and rigidity heterogeneities within the medium. Furthermore, if the caldera is elasto-plastic, the resulting gravity changes exhibit a pattern similar to that provided by a low effective rigidity. Even if the variation of the source volumes is quite similar for most of the models considered, the density inferred for the source ranges from ∼ 400 kg/m3 (supercritical water) to ∼ 3300 kg/m3 (higher than trachytic basalts), with drastically different implications for risk assessment.

TRASATTI E., BONAFEDE M (2008). Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy. ANNALS OF GEOPHYSICS, 51, 121-135.

Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy

BONAFEDE, MAURIZIO
2008

Abstract

Employing 3D finite element method, we develop an algorithm to calculate gravity changes due to pressurized sources of any shape in elastic and inelastic heterogeneous media. We consider different source models, such as sphere, spheroid and sill, dilating in elastic media (homogeneous and heterogeneous) and in elasto-plastic media. The models are oriented to reproduce the gravity changes and the surface deformation observed at Campi Flegrei caldera (Italy), during the 1982-84 unrest episode. The source shape and the characteristics of the medium have great influence in the calculated gravity changes, leading to very different values for the source densities. Indeed, the gravity residual strongly depends upon the shape of the source. Non negligible contributions also come from density and rigidity heterogeneities within the medium. Furthermore, if the caldera is elasto-plastic, the resulting gravity changes exhibit a pattern similar to that provided by a low effective rigidity. Even if the variation of the source volumes is quite similar for most of the models considered, the density inferred for the source ranges from ∼ 400 kg/m3 (supercritical water) to ∼ 3300 kg/m3 (higher than trachytic basalts), with drastically different implications for risk assessment.
2008
TRASATTI E., BONAFEDE M (2008). Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy. ANNALS OF GEOPHYSICS, 51, 121-135.
TRASATTI E.; BONAFEDE M
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact