The epidermis of scales of gecko lizards comprises alpha- and beta-keratins. Using bidimensional electrophoresis and immunoblotting, we have characterized keratins of corneous layers of scales in geckos, especially beta-keratins in digit pad lamellae. In the latter, the formation of thin bristles (setae) allow for the adhesion and climbing vertical or inverted surfaces. alpha-Keratins of 55-66 kDa remain in the acidic and neutral range of pI, while beta-keratins of 13-18 kDa show a broader variation of pI (4-10). Some protein spots for beta-keratins correspond to previously sequenced, basic glycine-proline-serine-rich beta-keratins of 169-191 amino acids. The predicted secondary structure shows that a large part of the molecule has a random-coiled conformation, small alpha helix regions, and a central region with 2-3 strands (beta-folding). The latter, termed core-box, shows homology with feather-scale-claw keratins of birds and is involved in the formation of beta-keratin filaments. Immunolocalization of beta-keratins indicates that these proteins are mainly present in the beta-layer and oberhautchen layer, including setae. The sequenced proteins of setae form bundles of keratins that determine their elongation. This process resembles that of feather-keratin on the elongation of barbule cells in feathers. It is suggested that small proteins rich in glycine, serine, and proline evolved in reptiles and birds to reinforce the mechanical resistance of the cytokeratin cytoskeleton initially present in the epidermis of scales and feathers.
Toni M., Dalla Valle L., Alibardi L. (2007). The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins. JOURNAL OF PROTEOME RESEARCH, 6(5), 1792-1805.
The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.
TONI, MATTIA;ALIBARDI, LORENZO
2007
Abstract
The epidermis of scales of gecko lizards comprises alpha- and beta-keratins. Using bidimensional electrophoresis and immunoblotting, we have characterized keratins of corneous layers of scales in geckos, especially beta-keratins in digit pad lamellae. In the latter, the formation of thin bristles (setae) allow for the adhesion and climbing vertical or inverted surfaces. alpha-Keratins of 55-66 kDa remain in the acidic and neutral range of pI, while beta-keratins of 13-18 kDa show a broader variation of pI (4-10). Some protein spots for beta-keratins correspond to previously sequenced, basic glycine-proline-serine-rich beta-keratins of 169-191 amino acids. The predicted secondary structure shows that a large part of the molecule has a random-coiled conformation, small alpha helix regions, and a central region with 2-3 strands (beta-folding). The latter, termed core-box, shows homology with feather-scale-claw keratins of birds and is involved in the formation of beta-keratin filaments. Immunolocalization of beta-keratins indicates that these proteins are mainly present in the beta-layer and oberhautchen layer, including setae. The sequenced proteins of setae form bundles of keratins that determine their elongation. This process resembles that of feather-keratin on the elongation of barbule cells in feathers. It is suggested that small proteins rich in glycine, serine, and proline evolved in reptiles and birds to reinforce the mechanical resistance of the cytokeratin cytoskeleton initially present in the epidermis of scales and feathers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.