Aim of the present study was to evaluate the influence on the global model's accuracy of the strategy adopted to define the average element Young's modulus in subject-specific finite element models of bones from computed tomography data. The classic strategy of calculating the Young's modulus from an average element density and the one that averages the Young's moduli directly derived from each voxel Hounsfield Unit were considered. These strategies were applied to the finite element model of a real human femur. The accuracy of the superficial stress and strain predictions was evaluated against experimentally measured values in 13 strain-gauge locations for five different loading conditions. The results obtained for the two material distributions were statistically different. Both models predicted very accurately the superficial stresses, with regression coefficients higher than 0.9 and slopes not significantly different from unity. The second strategy definitely improved the strains prediction accuracy: the regression coefficient raised from 0.69 to 0.79; the average and peak errors decreased from 45.1% to 31.3% and from 228% to 134% of the maximum measured strain, respectively. The stress fields predicted inside the bone were also significantly different. A new software implementing the second strategy was made available in the public domain.

The material mapping strategy influences the accuracy of CT- based finite element models of bones: an evaluation against experimental measurements / Taddei F.; Schileo E.; Benedikt Helgason; Cristofolini L.; Viceconti M.. - In: MEDICAL ENGINEERING & PHYSICS. - ISSN 1350-4533. - STAMPA. - 29:9(2007), pp. 973-979. [10.1016/j.medengphy.2006.10.014]

The material mapping strategy influences the accuracy of CT- based finite element models of bones: an evaluation against experimental measurements

TADDEI, FULVIA;CRISTOFOLINI, LUCA;VICECONTI, MARCO
2007

Abstract

Aim of the present study was to evaluate the influence on the global model's accuracy of the strategy adopted to define the average element Young's modulus in subject-specific finite element models of bones from computed tomography data. The classic strategy of calculating the Young's modulus from an average element density and the one that averages the Young's moduli directly derived from each voxel Hounsfield Unit were considered. These strategies were applied to the finite element model of a real human femur. The accuracy of the superficial stress and strain predictions was evaluated against experimentally measured values in 13 strain-gauge locations for five different loading conditions. The results obtained for the two material distributions were statistically different. Both models predicted very accurately the superficial stresses, with regression coefficients higher than 0.9 and slopes not significantly different from unity. The second strategy definitely improved the strains prediction accuracy: the regression coefficient raised from 0.69 to 0.79; the average and peak errors decreased from 45.1% to 31.3% and from 228% to 134% of the maximum measured strain, respectively. The stress fields predicted inside the bone were also significantly different. A new software implementing the second strategy was made available in the public domain.
2007
The material mapping strategy influences the accuracy of CT- based finite element models of bones: an evaluation against experimental measurements / Taddei F.; Schileo E.; Benedikt Helgason; Cristofolini L.; Viceconti M.. - In: MEDICAL ENGINEERING & PHYSICS. - ISSN 1350-4533. - STAMPA. - 29:9(2007), pp. 973-979. [10.1016/j.medengphy.2006.10.014]
Taddei F.; Schileo E.; Benedikt Helgason; Cristofolini L.; Viceconti M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 240
  • ???jsp.display-item.citation.isi??? 225
social impact