We prove that the obstacle problem for a non-uniformly parabolic operator of Kolmogorov type, with Cauchy (or Cauchy-Dirichlet) boundary conditions, has a unique strong solution u. We also show that u is a solution in the viscosity sense.

M. Di Francesco, A. Pascucci, S. Polidoro (2007). The obstacle problem for a class of hypoelliptic ultraparabolic equations. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A, 464, 155-176 [10.1098/rspa.2007.0090].

The obstacle problem for a class of hypoelliptic ultraparabolic equations

PASCUCCI, ANDREA;
2007

Abstract

We prove that the obstacle problem for a non-uniformly parabolic operator of Kolmogorov type, with Cauchy (or Cauchy-Dirichlet) boundary conditions, has a unique strong solution u. We also show that u is a solution in the viscosity sense.
2007
M. Di Francesco, A. Pascucci, S. Polidoro (2007). The obstacle problem for a class of hypoelliptic ultraparabolic equations. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A, 464, 155-176 [10.1098/rspa.2007.0090].
M. Di Francesco; A. Pascucci; S. Polidoro
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48428
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact