The generalized (1+1)-D non-linear Schrödinger (NLS) theory with particular integrable boundary conditions is considered. More precisely, two distinct types of boundary conditions, known as soliton preserving (SP) and soliton non-preserving (SNP), are implemented into the classical gl(N) NLS model. Based on this choice of boundaries the relevant conserved quantities are computed and the corresponding equations of motion are derived. A suitable quantum lattice version of the boundary generalized NLS model is also investigated. The first non-trivial local integral of motion is explicitly computed, and the spectrum and Bethe ansatz equations are derived for the soliton non-preserving boundary conditions.

A. Doikou, D. Fioravanti, F. Ravanini (2008). The generalized non-linear Schrödinger model on the interval. NUCLEAR PHYSICS. B, B790 [PM], 465-492 [10.1016/j.nuclphysb.2007.08.007].

The generalized non-linear Schrödinger model on the interval

RAVANINI, FRANCESCO
2008

Abstract

The generalized (1+1)-D non-linear Schrödinger (NLS) theory with particular integrable boundary conditions is considered. More precisely, two distinct types of boundary conditions, known as soliton preserving (SP) and soliton non-preserving (SNP), are implemented into the classical gl(N) NLS model. Based on this choice of boundaries the relevant conserved quantities are computed and the corresponding equations of motion are derived. A suitable quantum lattice version of the boundary generalized NLS model is also investigated. The first non-trivial local integral of motion is explicitly computed, and the spectrum and Bethe ansatz equations are derived for the soliton non-preserving boundary conditions.
2008
A. Doikou, D. Fioravanti, F. Ravanini (2008). The generalized non-linear Schrödinger model on the interval. NUCLEAR PHYSICS. B, B790 [PM], 465-492 [10.1016/j.nuclphysb.2007.08.007].
A. Doikou; D. Fioravanti; F. Ravanini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/48363
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact