Prosodic prominence, a speech phenomenon by which some linguistic units are perceived as standing out from their environment, plays a very important role in human communication. In this paper we present a study on automatic prominence identification using Probabilistic Graphical Models, a family of Machine Learning Systems able to properly handle sequences of events. We tested the most promising members of such models on utterances selected from a manually annotated Italian speech corpus, obtaining very good recognition results crucially converging with the prominence detection responses provided by a pool of native speakers.
Tamburini, F., Bertini, C., Bertinetto, P.M. (2014). Prosodic prominence detection in Italian continuous speech using probabilistic graphical models. Dublin : Science Foundation Ireland.
Prosodic prominence detection in Italian continuous speech using probabilistic graphical models
TAMBURINI, FABIO;
2014
Abstract
Prosodic prominence, a speech phenomenon by which some linguistic units are perceived as standing out from their environment, plays a very important role in human communication. In this paper we present a study on automatic prominence identification using Probabilistic Graphical Models, a family of Machine Learning Systems able to properly handle sequences of events. We tested the most promising members of such models on utterances selected from a manually annotated Italian speech corpus, obtaining very good recognition results crucially converging with the prominence detection responses provided by a pool of native speakers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


